Cramer's Rule

\#92 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
 by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG92-1 (19)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG92-2

\square Cramer's Rule
concerns the solution
of a system of n linear equations in n unknowns
wh $n \in \operatorname{pos}$ int
by the use of determinants;
the general case of Cramer's Rule
for n linear equations in n unknowns
is notationally rather fussy to state in symbols; instead we here state Cramer's Rule in words
for the general case
and then state Cramer's Rule explicitly in symbols
for the first three cases
$\mathrm{n}=1,2,3$
so that the symbolic rendering of the general case becomes obvious;
considerations may be thought of
as taking place in any field F
eg
the rational field $\mathbb{@}$ or the real field $\mathbb{@}$ or the complex field \mathbb{C}

GG92-3

- The Big Idea of Cramer's Rule
here is an informal verbal description of the algorithm called Cramer's Rule;
start with a system of n linear equations in n unknowns, the equations being written horizontally
and stacked vertically,
where the left hand sides of the equations
have the unknowns
appearing in the same order from left to right
\& the constant terms
are on the right hand sides of the equations;
form the $\mathrm{n} \times \mathrm{n}$ ' denominator' determinant D
on the coefficients of the unknowns;
for each unknown
form a ' numerator' $\mathrm{n} \times \mathrm{n}$ determinant from D
by replacing
the column of the coefficients of this unknown
by the column of constant terms;
assume that $\mathrm{D} \neq 0$;

GG92-4

then

the system has a unique solution where the value of each unknown is the quotient of the corresponding ' numerator' determinant by the ' denominator' determinant

(1) Cramer's Rule
 for one linear equation in one unknown

consider the system

* $\{\mathrm{ax}=\mathrm{b}$
of one linear equation in one unknown
X
\&
form the ' denominator' determinant
$\mathrm{D}=|\mathrm{a}|=\mathrm{a}$
on the coefficient of the unknown
\&
form the ' x - numerator' determinant
$\mathrm{D}_{\mathrm{x}}=|\mathrm{b}|=\mathrm{b}$
from D by replacing the column of the coefficient of x with the column of the constant term

GG92-6

$$
\begin{aligned}
& \text { then } \\
& D \neq 0 \\
& \Rightarrow \\
& \exists l \text { sol of } * \text { viz } \\
& x=\frac{D_{x}}{D}
\end{aligned}
$$

GG92-7
(2) Cramer's Rule
for two linear equations in two unknowns
consider the system

* $\left\{\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array}\right.$
of two linear equations in two unknowns
x, y
\&
form the ' denominator' determinant
$D=\left|\begin{array}{ll}\mathrm{a}_{1} & \mathrm{~b}_{1} \\ \mathrm{a}_{2} & \mathrm{~b}_{2}\end{array}\right|$
on the coefficients of the unknowns

GG92-8
\&
form the ' x - numerator' determinant
$\mathrm{D}_{\mathrm{x}}=\left|\begin{array}{ll}\mathrm{c}_{1} & \mathrm{~b}_{1} \\ \mathrm{c}_{2} & \mathrm{~b}_{2}\end{array}\right|$
from D by replacing the column of the coefficients of x with the column of the constant terms \&
form the ' y - numerator' determinant
$D_{y}=\left|\begin{array}{ll}a_{1} & c_{1} \\ a_{2} & c_{2}\end{array}\right|$
from D by replacing the column of the coefficients of y
with the column of the constant terms
GG92-9

> then
> $D \neq 0$
> \Rightarrow
> \exists I sol of $*$ viz
> $\left\{\begin{array}{l}x=\frac{D_{x}}{D} \\ y=\frac{D_{y}}{D}\end{array}\right.$

GG92-10
(3) Cramer's Rule
for three linear equations in three unknowns
consider the system
$*\left\{\begin{array}{l}a_{1} x+b_{1} y+c_{1} z=d_{1} \\ a_{2} x+b_{2} y+c_{2} z=d_{2} \\ a_{3} x+b_{3} y+c_{3} z=d_{3}\end{array}\right.$
of three linear equations in three unknowns
$\mathrm{x}, \mathrm{y}, \mathrm{z}$
\&
form the ' denominator' determinant
$D=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|$
on the coefficients of the unknowns

GG92-11
\&
form the ' x - numerator' determinant
$D_{x}=\left|\begin{array}{lll}\mathrm{d}_{1} & \mathrm{~b}_{1} & \mathrm{c}_{1} \\ \mathrm{~d}_{2} & \mathrm{~b}_{2} & \mathrm{c}_{2} \\ \mathrm{~d}_{3} & \mathrm{~b}_{3} & \mathrm{c}_{3}\end{array}\right|$
from D by replacing the column of the coefficients of x with the column of the constant terms

GG92-12
\&
form the ' y - numerator' determinant
$D_{y}=\left|\begin{array}{lll}\mathrm{a}_{1} & \mathrm{~d}_{1} & \mathrm{c}_{1} \\ \mathrm{a}_{2} & \mathrm{~d}_{2} & \mathrm{c}_{2} \\ \mathrm{a}_{3} & \mathrm{~d}_{3} & \mathrm{c}_{3}\end{array}\right|$
from D by replacing the column of the coefficients of y with the column of the constant terms

GG92-13
\&
form the ' z - numerator' determinant
$D_{z}=\left|\begin{array}{lll}\mathrm{a}_{1} & \mathrm{~b}_{1} & \mathrm{~d}_{1} \\ \mathrm{a}_{2} & \mathrm{~b}_{2} & \mathrm{~d}_{2} \\ \mathrm{a}_{3} & \mathrm{~b}_{3} & \mathrm{~d}_{3}\end{array}\right|$
from D by replacing the column of the coefficients of z with the column of the constant terms

GG92-14

> then
> $D \neq 0$
> \Rightarrow
> \exists I sol of $*$ viz
> $\left\{\begin{array}{l}x=\frac{D_{x}}{D} \\ y=\frac{D_{y}}{D} \\ z=\frac{D_{z}}{D}\end{array}\right.$

GG92-15
\square a sketch of the proof of Cramer's Rule

Cramer's Rule may be proved efficiently \& insightfully by using the properties of determinants; in order to reduce the quantity of notation consider the case for $\mathrm{n}=2$, the general case evidently following the same ideas; let

- $F \in$ field
$\cdot a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}, x, y \in F$
- define $\mathrm{D}, \mathrm{D}_{\mathrm{x}}, \mathrm{D}_{\mathrm{y}}$ to be the 2×2 determinants as above
- assume $\mathrm{D} \neq 0$ then
- if
$x=\frac{D_{x}}{D} \& y=\frac{D_{y}}{D}$,
then
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}=\mathrm{c}_{1}$
\Leftrightarrow
$a_{1} D_{x}+b_{1} D_{y}=c_{1} D$
\Leftrightarrow
$a_{1} D_{x}+b_{1} D_{y}-c_{1} D=0$
which is true
because the LHS is the negative of the expansion along the first row
of a 3×3 determinant with two rows identical
\& thus
$\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}=\mathrm{c}_{1}$
\& similarly
$a_{2} x+b_{2} y=c_{2}$

GG92-17

- if
$a_{1} x+b_{1} y=c_{1} \& a_{2} x+b_{2} y=c_{2}$, then
$x D=x\left|\begin{array}{ll}a_{1} & b_{1} \\ a_{2} & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} x & b_{1} \\ a_{2} x & b_{2}\end{array}\right|=\left|\begin{array}{ll}a_{1} x+b_{1} y & b_{1} \\ a_{2} x+b_{2 y} & b_{2}\end{array}\right|$
$=\left|\begin{array}{ll}c_{1} & b_{1} \\ c_{2} & b_{2}\end{array}\right|=D_{x}$
\& thus
$\mathrm{xD}=\mathrm{D}_{\mathrm{x}}$
\& similarly
$\mathrm{yD}=\mathrm{D}_{\mathrm{y}}$
whence
$x=\frac{D_{x}}{D} \& y=\frac{D_{y}}{D}$

QED

GG92-18
\square bioline
Gabriel Cramer
1704-1752
Swiss
algebraist, analyst, editor, expositor; published Cramer's Rule in 1750;
Cramer's Rule was previously known to Maclaurin probably by 1729
\& was published posthumously in 1748

GG92-19

