Certain Classes of Abbreviations

\#90 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
 by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG90-1 (31)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG90-2

\square phrases containing 'if'

- if and only if iff
- if it exists
iit
- if they exist ite

\square phrases containing 'in’

- in addition to
iat
- in general ing
- in order to iot
- in order to prove iotp
- in order to prove that iotpt
- in other symbols ios
- in other words iow
- in particular inp
- in place of ipo
- in regard to irt
- in spite of iso
- in terms of ito
- in the form itf
- in the form of itfo
- in the groove itg

\square phrases containing 'of'

- in place of ipo
- in spite of iso
- in terms of ito
- of the form otf

\square phrases containing 'that'

- in order to prove that iotpt
- it is enuf to prove that iietpt
- it is necessary to prove that iintpt
- it is necessary and sufficient to prove that iinastpt
- it is sufficient to prove that iistpt
- so that
st
- such that
st

GG90-7
\square phrases containing 'to'

- according to acto
- in addition to iato
- in order to ioto
- in regard to irt
- it is enuf to prove iietp
- it is enuf to prove that iietpt
- it is necessary and sufficient to prove inastp
- it is necessary and sufficient to prove that iinastpt
- it is necessary to prove iintp
- it is necessary to prove that iintpt
- it is sufficient to prove iistp
- it is sufficient to prove that iistpt
- relative to relto
- with regard to wrt
- with respect to wrt

G90-9
\square phrases containing 'under'

- under suitable conditions usc
- under suitable hypotheses ush
- under the condition(s) utc
- under the condition(s) that utct
- under the hypothesis/hypotheses uth
- under the hypothesis/hypotheses that utht

\square phrases containing 'which'

- which are
wa
- which is
wi
- which was to be proved wwtbp

\square words/phrases containing 'with’

- endowed with ew
- equipped with ew
- provided with pw
- together with tw
- with
w
- within
wi

GG90-12

- without
wo
- without loss of generality wlog
- with regard to wrt
- with respect to
wrt
- with the understanding that wtut

\square other phrases

- as well as
awa
- it is enuf iie
- it is necessary iin
- it is necessary and sufficient iinas
- it is sufficient iis
- necessary and sufficient nas
- necessary and sufficient condition nasc
- the following statements are equivalent tfsae
- the following statements are pairwise equivalent tfsape
- the proof is completed tpic
\square a few abbreviations in caps
- as clear as a bell

ACAAB

- as clear as mud

ACAM

- as everybody/everyone knows AEK
- as soon as possible ASAP
- Before the Common Era BCE
- Common Era CE
- extrasensory perception/phenomena/powers ESP
- for your information FYI
- in my humble opinion IMHO
- integration by parts IBP
- left hand side

LHS

- Oxford English Dictionary OED
- quite easily done QED
- real soon now RSN
- right hand side RHS
\square some headings
D. $=_{d f}$ Definition.
T. $=_{\mathrm{df}}$ Theorem.
P. $=_{\mathrm{df}}$ Proof.
R. $=_{\mathrm{df}}$ Remark.
E. $=_{\mathrm{df}}$ Example.
H. $={ }_{\mathrm{df}}$ Hypothesis.
$\mathrm{N} .=_{\mathrm{df}}$ Notation. (which is understood to include terminology, words being symbols too)
K. $=_{\mathrm{df}}$ Corollary.
L. $=_{\mathrm{df}}$ Lemma.

LL. $=_{\mathrm{df}}$ Litle Lemma.
X. $=_{d f}$ Exercise.

GP. $=_{\mathrm{df}}$ Geometric Picture.
HN. $=_{\mathrm{df}}$ Historical Note.
PN. $=_{\mathrm{df}}$ Philosophical Note.
SH. $=_{d f}$ Standing Hypothesis.

\square some geometric abbreviations

- point
pt
- line
ln
- plane
pl
- space
sp
- angle ang
- side
sd
- straight str
- right
$1 t$

GG90-19

- bisect bis
- trisect tris
- midpoint mpt
- perpendicular bisector pb
- perpendicular perp
- altitude alt
- interior/internal int
- exterior/external ext
- tangent tan
- secant sec
- length
lg
- width
wd
- height ht
- area ar
- volume
vol

GG90-21

- curve/curvature crv
- surface
surf
- solid
sol
- acute
act
- obtuse
obt
- oblique
obl
- scalar
sca
- vector
vec

- scalene scln

- isosceles isos
- equilateral eqlat
- equiangular eqang
- dimension dim

\square more equaters

- comes from
$=\mathrm{cf}$
- is pronounced as
$=\mathrm{pr}$
- is rooted in
$=\mathrm{ri}$
- is symbolized by
$=\mathrm{sb}$
- is a symbol for
$=\mathrm{sf}$
\square some abbreviations using the existential quantifier \exists
- there exists
\exists
- there does not exist
$\neg \exists$
- does there exist
? \exists

GG90-25

\square fields of mathematics

- algebra
alg
- number theory
nr thr
- group theory grp thr
- ring theory
rng thr
- field theory fld thr
- class field theory cls fld thr
- graph theory gr thr
- analysis
anl
- calculus
cal
- differential calculus dif cal
- integral calculus int cal
- differential and integral calculus dif \& int cal
- differential equations dif eqns
- ordinary differential equations ODE
- partial differential equations PDE
- real analysis
rl anl
- complex analysis cmpx anl
- functional analysis fcn anl
- operator theory op thr
- calculus of variations cofv
- operations research op res
- probability prob
- statistics
stat
- probability and statistics
prob \& stat

GG90-28

- geometry geom
- euclidean geometry eucl geom
- noneuclidean geometry
\neg eucl geom
- synthetic geometry
syn geom
- projective geometry
prj geom
- analytic geometry anl geom
- algebraic geometry alg geom
- knot theory
knt thr

G90-29

- topology
top
- algebraic topology alg top
- homology theory homl thr
- homotopy theory homt thr
- general topology gen top
- low-dimensional topology lodim top
- geometric topology geom top
\square how to help abolish
-ough \& -ought
- enough = enuf
- rough = ruf
- thorough = thoro
- though $=$ tho
- through = thru
- tough = tuf
- through and through = thru \& thru
- nought $=$ nawt
- ought = awt
- thought = thawr

