The Classical Greek Alphabet

\#89 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
 by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG89-1 (14)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG89-2

\square the classical Greek alphabet has 24 = two dozen letters

- the pattern for each Greek letter is:
(rank in canonical order) Greek letter's name in English capital Greek letter lowercase Greek letter
Greek letter's name in Greek
English transliteration \& phonetic value
(1) alpha

A α
$\alpha \lambda \varphi \alpha$
ay A a
(2) beta

B β
$\beta \eta \tau \alpha$
bee B b
(3) gamma
$\Gamma \gamma$
$\gamma \alpha \mu \mu \alpha$
gee $G \mathrm{~g}$ or en N n
(4) delta
$\Delta \delta$
$\delta \varepsilon \lambda \tau \alpha$
dee D d

GG89-4
(5) epsilon

E ε
$\varepsilon \psi \tau \lambda O v=$ simple e ee E e (short)
(6) zeta

Z ζ
$\zeta \eta \tau \alpha$
zee Z z
(7) eta

H η
$\eta \tau \alpha$
ee E e (long)
(8) theta
$\Theta \vartheta$
$\vartheta \eta \tau \alpha$
tee - aitch TH th (digraph)

GG89-5
(9) iota

I 1
$1 \omega \tau \alpha$
eye I i
(10) kappa

K к
$\kappa \alpha \pi \pi \alpha$
kay K k
(11) lambda
$\Lambda \lambda$
$\lambda \alpha \mu \beta \delta \alpha$
el L 1
(12) mu

M μ
μv
em M m

GG89-6
(13) nu

N v
vo
en N n
(14) $\mathrm{xi}=_{\mathrm{pr}}$ zeye $/$ kseye $/$ ksee
$\Xi \xi$
ξ_{1}
ex X x
(15) omicron

O o
о $\mu 1 \kappa \rho о v=$ small oh
oh O o (short)
(16) pi

П π
$\pi 1$
pe P p

GG89-7
(17) rho
P ρ
$\rho \omega$
ar R r or ar-aitch RH rh (digraph)
(18) sigma
$\Sigma \sigma$ (nonend form) ς (end form)
$\sigma \imath \gamma \mu$
ess S s
(19) tau

T τ
$\tau \alpha v$
tee T t
(20) upsilon

Y v
v $\psi I \lambda o v=$ simple wye $/ y u$
wye Y y or yu U u

GG89-8
(21) phi
$\Phi \varphi$
φt
pe - aitch PH ph (digraph)
(22) chi

X χ
$\chi 1$
cee - aitch CH ch (digraph)
(23) psi
$\Psi \psi$
$\psi 1$
pe - ess PS ps (digraph)
(24) omega
$\Omega \omega$
$\omega \mu \varepsilon \gamma \alpha=$ large oh
oh O o (long)

GG89-9
\square a sampling of pre-emptive usage of Greek letters in context for specified mathematical notions

- $\alpha=$ angular acceleration
- $\mathrm{B}(\mathrm{x}, \mathrm{y})=$ the beta function
- $\Gamma(\mathrm{x})=$ the gamma function
- $\gamma=$ the Euler constant
- $\Delta=$ the difference operator
- $\Delta=$ the increment sign
- $\Delta=$ the Laplacian operator
- $\delta(\mathrm{x})=$ the Dirac delta function
(wi good for physicists
but anathema for mathematicians)
- δ (with adscripts) $=$ the Kronecker delta
- $\delta=$ countable intersection

GG89-10

- $\zeta(\mathrm{z})=$ the Riemann zeta functuion
- $\kappa=$ the curvature of a space curve
- $\lambda=$ a Lagrange multiplier
- $\mu=$ a measure function
- $\mu=$ statistical mean
- $\Pi=$ the product sign
- $\pi=$ the circle ratio
- $\Sigma=$ the summation sign
- $\sigma=$ countable union
- $\sigma=$ standard deviation

GG89-11

- $\tau=$ the torsion of a space curve
- $\varphi=$ a function
- $\varphi=$ the golden ratio
- $\chi=$ the Euler characteristic of a surface say
- $\Omega=$ the least uncounable ordinal
- $\omega=$ the least infinite ordinal
- $\omega=$ angular speed
- $\omega=$ an exterior differential form
- $(\xi, \eta)=$ plane rectangular coordinates ipo (x,y)
- $(\xi, \eta, \zeta)=$ solid rectangular coordinates ipo ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)
- $(\mathrm{r}, \vartheta)=$ polar coordinates
- $(\mathrm{r}, \vartheta, \mathrm{z})=$ cylindrical coordinates
- $(\mathrm{r}, \vartheta, \varphi)=$ spherical coordinates
- in discourse about limits and convergence ε and δ often appear;
if not the origin, then this is certainly a reinforcement:
ε stands for ' error'
\&
δ stands for ' difference'
- the elementhood sign is taken to be the lowercase epsilon or a stylized form of it; this usage comes from the initial letter of the Greek word $\varepsilon \sigma \tau \iota=$ is; the Latin word est $=$ is
has its origin in the first three letters; that 'element' begins with the letter e is reinforcement

GG89-13
\square the names of the $26=$ two baker's dozens of the letters of the English alphabet in canonical order
(01) A a ay
(14) N n en
(02) B b bee
(03) C c cee
(04) D d dee
(05) E e ee
(06) F f ef
(07) G g gee
(08) H h aitch
(09) I i eye
(10) J j jay
(11) K k kay
(12) L l el
(13) M m em
(15) O o oh
(16) P p pe
(17) Q q cue
(18) R r ar
(19) S s ess
(20) T t tee
(21) U u yu
(22) V v vee
(23) W w double-yu
(24) X x ex
(25) Y y wye
(26) Z z zee

GG89-14

