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 the real gudermannian 

constitutes a real bridge between

the real trigonometric

and 

the real hyperbolic functions

viz

y =  gd x  

 =  tanh x

cos y =  sech x

tan y =  sinh x

cot y =  csch x

sec y =  cosh x

csc y =  coth x
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 the correspondence  between 

the trig fcns and the hyp fcns

via the gudermannian

produces a correspondence between 

trig identities and hyp identities;

eg looking at 

the three trig pythagorean identities
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 the corespondence

between trig fcns &  hyp fcns

via the gudermannian

has a geometric description

which is given by the following

three labeled right triangles
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sin gd x = tanh x
1

cos gd x = coth x

gd x

tan gd x = sinh x

1

gd x

cot gd x = csch x

gd x

sec gd x = cosh x

csc gd x = coth x 1
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 forms of the gudermannian

gd x  

=  sin

 cos

 tan

 cot

 sec

 coth

 2 tan

 2 tan

 sech t dt
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 forms of the inverse gudermannian

gd    

 sinh

 cosh

 tanh

 coth

 sech

 csch

 2 tanh

 log tan
x

 log (sec x + tan x)

= sec t dt

 &  ranges have to be specified)
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 properties of the gudermannian y = gd x 

and its graph

 the function y = gd x has these properties

•  domain: 

  range: 

  class: analytic

  parity: odd

•  strictly increasing

•  gd 0) =  0

•  gd x > 0  x > 0

•  gd x < 0  x < 0

•  lim  =  
2

•  lim  =  
2
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D the graph of y = gd x has these properties

  thru origin with slope 1 

•  symmetric wrt origin 

•  steadily rising

  asymptotic to horizontal line y =  
2

  asymptotic to horizontal line y =  
2

  flex point at origin

•  concave down for x > 0

•  concave up for x < 0

•
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•

tan

•

cot

:

 parametric equations,  first form

x = 2 tanh

   t

 parametric equations,  second form

x = 2 coth

   t

 the values of the inv trig fcns 

tan  &  cot
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 do - it - yourself sketch: 

graph of the gudermannian 

y =  gd x   (-• < < •x )
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 properties of the inverse gudermannian y = gd x

and its graph

 the function y = gd x has these properties

•  domain: 

  range: 

   

  parity: odd

•  strictly increasing

•  gd 0) =  0

•  gd  x > 0  x > 0

•  gd  x < 0  x < 0

•  gd  as  x
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D    = gd x  ha   

  thru origin with slope 1 

•  symmetric wrt origin 

•  steadily rising

  asymptotic to vertical line x =  
2

  asymptotic to vertical line x =  
2

  flex point at origin

•  concave up for x > 0

•  concave down for x < 0

the graph of y s these properties-
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•

tanh

•

coth

:

 parametric equations,  first form

x = 2 tan

   t

 parametric equations,  second form

x = 2 cot

   t

 the values of the inv trig fcns 
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 do - it - yourself sketch:

graph of the inverse gudermannian

y =  gd    - - < <Ê
Ë

ˆ
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 derivatives and differentials

•  
d

dx
 =  sech x

•  
d

dx
 =  sec x

•   gd x =  sech x dx

•   dgd x =  sec x dx

gd x

gd x

d

-

-

1

1

GG88-18



  

    integrals

•  sech x dx =  gd x +C

•  sec x dx =  gd x +C

•  sech t dt =  gd x

•  sec t dt =  gd x

0
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 the Maclaurin series for gd x

gd x 
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 the Maclaurin series for gd
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 more formulas

•  tanh
1

2
x =  tan

1

2
 &  coth

1

2
x =  cot

1

2

•  e  

=  sec gd x + tan gd x

=  
1 +sin gd x

cos gd x

 
cos gd x

1 sin gd x

=  tan
1

2

  gd  =  log (csc x

•  
d
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•  csc x dx =
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 the six basic trig functions 

may be rationalized 

by the substitution

u = tan
x

2

           

tan x =
2u

1
            cot x =

1

            csc x =
1 + u

2u

    integrands

may be rationalized by this substitution

2

viz

x
u

u
x

u

u

u

u

u

x
u

u

dx
du

u
so that some trig

sin cos

sec

&

=
+

= -
+

-
-

= +
-

=
+

2

1

1

1

2

1

1

2

1

2

2

2

2

2

2

2

2

GG88-23



• a geometric description

of the substitution

u = tan
x

2
is given by the labeled right triangle

                          

x

2u

1 2- u

1 2+ u
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 the six basic hyp functions 

may be rationalized 

by the substitution

u = tanh
x

2

           

tanh x =
2u

1
            coth x =

1

sech x             csch x =
1 u

2u

    integrands

may be rationalized by this substitution
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• a geometric description 

of the substitution

u = tanh
x

2
is given by the labeled right triangle

                            

gd x

2u

1 2- u

1 2+ u
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   a definite integral

the area of 

the region in QI bounded by

the curve y = gd x

& the horizontal line y =
2

  

the area of 

the region in QI bounded by

the curve y = gd x

& the vertical line x =
2
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 further uses of the gudermannian

pop up in various places such as

the theory of elliptic functions,

noneuclidean geometry,  

physics of the pendulum, 

and cartography;

indeed in the Mercator map projection

the vertical distance from the equator 

of a location on the chart

is given by gd  

where  is the latitude of the location

-1J
J
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 bioline

Christoph Gudermann

1798 -1852

German

analyst,  geometer;  teacher of Weierstrass;

name ' gudermannian'  and notation ' gd'

in present usage were introduced by Cayley

in honor of Gudermann' s work in the area 
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 IMHO

the gudermannian should appear 

in several exercises scattered thruout 

the undergraduate calculus courses;

for example,  it helps to clarify that mysterious formula 

for the indefinite integral of the secant 

and indeed provides a short formula for it;

likewise for the cosecant;

it correlates the trig functions 

and the hyperbolic functions  

in a pleasant and surprising manner
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