Good Things about the Gudermannian \#88 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG88-1 (31)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG88-2

$\square \mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{t} \in$ real $\mathrm{nr} \operatorname{var}$
\square the real gudermannian function
${ }_{\mathrm{ab}}$ the gudermannian
$=$ pr goohd - er - MAHN - ee - en
$=_{\mathrm{dn}} \operatorname{gdx}(-\infty<\mathrm{x}<\infty)$
wh $\mathrm{gd} \leftarrow$ gudermannian
$=_{\text {rd }}$ goohd - er x
$={ }_{\mathrm{df}} \operatorname{Tan}^{-1} \sinh \mathrm{x}$
\square the real gudermannian constitutes a real bridge between the real trigonometric functions and the real hyperbolic functions
viz

$$
\begin{aligned}
& y=g d x \\
& \Rightarrow
\end{aligned}
$$

$\sin y=\tanh x$
$\cos \mathrm{y}=\operatorname{sech} \mathrm{x}$
$\tan y=\sinh x$
$\cot \mathrm{y}=\operatorname{csch} \mathrm{x}$
$\sec y=\cosh x$
$\csc y=\operatorname{coth} x$
\&
$\tan \frac{\mathrm{y}}{2}=\tanh \frac{\mathrm{x}}{2}$
$\cot \frac{\mathrm{y}}{2}=\operatorname{coth} \frac{\mathrm{x}}{2}$

GG88-4
\square the correspondence between
the trig fcns and the hyp fcns
via the gudermannian
produces a correspondence between trig identities and hyp identities;
eg looking at
the three trig pythagorean identities
trig: $\sin ^{2} x+\cos ^{2} x=1$
hyp: $\tanh ^{2} x+\operatorname{sech}^{2} x=1$
trig: $1+\tan ^{2} x=\sec ^{2} x$
hyp: $1+\sinh ^{2} x=\cosh ^{2} x$
trig: $1+\cot ^{2} \mathrm{x}=\csc ^{2} \mathrm{x}$
hyp: $1+\operatorname{csch}^{2} x=\operatorname{coth}^{2} x$

GG88-5
\square the corespondence
between trig fcns \& hyp fcns
via the gudermannian
has a geometric description
which is given by the following three labeled right triangles

$\cot g d x=\operatorname{csch} x$

GG88-7
\square forms of the gudermannian

$$
\begin{aligned}
& \operatorname{gdx} \\
& =\sin ^{-1} \tanh x \\
& =\cos ^{-1} \operatorname{sech} x \\
& =\tan ^{-1} \sinh x \\
& =\cot ^{-1} \operatorname{csch} x \\
& =\sec ^{-1} \cosh x \\
& =\csc ^{-1} \operatorname{coth} x \\
& =2 \tan ^{-1} \tanh \frac{x}{2} \\
& =2 \tan ^{-1} e^{x}-\frac{\pi}{2} \\
& =\int_{0}^{x} \operatorname{sech} t d t
\end{aligned}
$$

(domains \& ranges have to be specified)
\square forms of the inverse gudermannian

$$
\begin{aligned}
& \mathrm{gd}^{-1} \mathrm{x} \\
& =\sinh ^{-1} \tan \mathrm{x} \\
& =\cosh ^{-1} \sec \mathrm{x} \\
& =\tanh ^{-1} \sin \mathrm{x} \\
& =\operatorname{coth}^{-1} \csc \mathrm{x} \\
& =\operatorname{sech}^{-1} \cos \mathrm{x} \\
& =\operatorname{csch}^{-1} \cot \mathrm{x} \\
& =2 \tanh ^{-1} \tan \frac{\mathrm{x}}{2} \\
& =\log \tan \left(\frac{\mathrm{x}}{2}+\frac{\pi}{4}\right) \\
& =\log (\sec \mathrm{x}+\tan \mathrm{x}) \\
& =\int_{0}^{\mathrm{x}} \operatorname{sect} \mathrm{tt}
\end{aligned}
$$

(domains \& ranges have to be specified)

GG88-9
\square properties of the gudermannian $y=g d x$ and its graph
Δ the function $\mathrm{y}=\mathrm{gdx}$ has these properties

- domain: $-\infty<x<\infty$
- range: $-\frac{\pi}{2}<\mathrm{y}<\frac{\pi}{2}$
- class: analytic
- parity: odd
- strictly increasing
- $\operatorname{gd}(0)=0$
- $\operatorname{gd} \mathrm{x}>0 \Leftrightarrow \mathrm{x}>0$
- $\operatorname{gd} \mathrm{x}<0 \Leftrightarrow \mathrm{x}<0$
- $\exists \lim _{x \rightarrow \infty} \operatorname{gd} x=\frac{\pi}{2}$
- $\exists \lim _{x \rightarrow-\infty} \operatorname{gdx}=-\frac{\pi}{2}$
Δ the graph of $y=\operatorname{gdx}$ has these properties
- thru origin with slope 1
- symmetric wrt origin
- steadily rising
- asymptotic to horizontal line $\mathrm{y}=\frac{\pi}{2}$
- asymptotic to horizontal line $\mathrm{y}=-\frac{\pi}{2}$
- flex point at origin
- concave down for $x>0$
- concave up for $\mathrm{x}<0$
- parametric equations, first form

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{x}=2 \tanh ^{-1} \mathrm{t} \\
\mathrm{y}=2 \tan ^{-1} \mathrm{t}
\end{array}\right. \\
& \text { wh }|\mathrm{t}|<1
\end{aligned}
$$

- parametric equations, second form

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=2 \operatorname{coth}^{-1} t \\
y=2 \cot ^{-1} t
\end{array}\right. \\
& \text { wh }|t|>1
\end{aligned}
$$

note: the values of the inv trig fcns
$\tan ^{-1} \mathrm{t} \& \cot ^{-1} \mathrm{t}$ are to be properly chosen
\square do - it - yourself sketch: graph of the gudermannian

$$
y=\operatorname{gdx} \quad(-\infty<x<\infty)
$$

\square properties of the inverse gudermannian $\mathrm{y}=\mathrm{gd}^{-1} \mathrm{x}$ and its graph
Δ the function $\mathrm{y}=\mathrm{gd}^{-1} \mathrm{x}$ has these properties

- domain: $-\frac{\pi}{2}<x<\frac{\pi}{2}$
- range: $-\infty<\mathrm{y}<\infty$
- class: analytic
- parity: odd
- strictly increasing
- $\operatorname{gd}^{-1}(0)=0$
- $\mathrm{gd}^{-1} \mathrm{x}>0 \Leftrightarrow \mathrm{x}>0$
- $\mathrm{gd}^{-1} \mathrm{x}<0 \Leftrightarrow \mathrm{x}<0$
- $\mathrm{gd}^{-1} \mathrm{x} \rightarrow \infty$ as $\mathrm{x} \uparrow \frac{\pi}{2}$
- $\mathrm{gd}^{-1} \mathrm{x} \rightarrow-\infty$ as $\mathrm{x} \downarrow-\frac{\pi}{2}$
Δ the graph of $y={g d^{-1}}^{x}$ has these properties
- thru origin with slope 1
- symmetric wrt origin
- steadily rising
- asymptotic to vertical line $\mathrm{x}=\frac{\pi}{2}$
- asymptotic to vertical line $\mathrm{x}=-\frac{\pi}{2}$
- flex point at origin
- concave up for $x>0$
- concave down for $\mathrm{x}<0$
- parametric equations, first form

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathrm{x}=2 \tan ^{-1} \mathrm{t} \\
\mathrm{y}=2 \tanh ^{-1} \mathrm{t}
\end{array}\right. \\
& \mathrm{wh}|\mathrm{t}|<1
\end{aligned}
$$

- parametric equations, second form

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=2 \cot ^{-1} t \\
y=2 \operatorname{coth}^{-1} t
\end{array}\right. \\
& w h|t|>1
\end{aligned}
$$

note: the values of the inv trig fcns
$\tan ^{-1} \mathrm{t} \& \cot ^{-1} \mathrm{t}$ are to be properly chosen
\square do - it - yourself sketch: graph of the inverse gudermannian
$y={g d^{-1}}^{x} \quad\left(-\frac{\pi}{2}<x<\frac{\pi}{2}\right)$

GG88-17
derivatives and differentials

- $\frac{\mathrm{d}}{\mathrm{dx}} \operatorname{gdx}=\operatorname{sech} \mathrm{x}$
- $\frac{d}{d x} g d^{-1} x=\sec x$
- $\operatorname{dgd} x=\operatorname{sech} x d x$
- $\operatorname{dgd}^{-1} x=\sec x d x$

\square indefinite and definite integrals

- $\int \operatorname{sech} x d x=\operatorname{gd} x+C$
- $\int \sec x d x=\operatorname{gd}^{-1} x+C$
- $\int_{0}^{x} \operatorname{sech} t d t=\operatorname{gdx}$
- $\int_{0}^{\mathrm{x}} \sec t d t=\mathrm{gd}^{-1} \mathrm{x}$
\square the Maclaurin series for gdx
gdx
$=x-\frac{x^{3}}{6}+\frac{x^{5}}{24}-\frac{61 x^{7}}{5040}+\cdots$
$=\sum_{n=0}^{\infty} \frac{E_{2 n}}{(2 n+1)!} x^{2 n+1}$

IC: $-1<x<1$

\square the Maclaurin series for $\mathrm{gd}^{-1} \mathrm{x}$

$$
\begin{aligned}
& {g d^{-1} x}^{=x+\frac{x^{3}}{6}+\frac{x^{5}}{24}+\frac{61 x^{7}}{5040}+\cdots} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{E_{2 n}}{(2 n+1)!} x^{2 n+1} \\
& \text { IC }:-\frac{\pi}{2}<x<\frac{\pi}{2}
\end{aligned}
$$

\square more formulas

- $\tanh \frac{1}{2} x=\tan \frac{1}{2} g d x \& \operatorname{coth} \frac{1}{2} x=\cot \frac{1}{2} \operatorname{gd} x$
- e^{x}
$=\sec g d x+\tan g d x$
$=\frac{1+\operatorname{singdx}}{\cos g d x}$
$=\frac{\cos g d x}{1-\sin g d x}$
$=\tan \left(\frac{1}{2} \operatorname{gdx}+\frac{\pi}{4}\right)$
- $\operatorname{gd}^{-1}\left(\mathrm{x}+\frac{\pi}{2}\right)=\log (\csc \mathrm{x}-\cot \mathrm{x})$
- $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{gd}^{-1}\left(\mathrm{x}+\frac{\pi}{2}\right)=\csc \mathrm{x}$
- $\int \csc x d x=g d^{-1}\left(x+\frac{\pi}{2}\right)+C$
\square the six basic trig functions
may be rationalized
by the substitution
$u=\tan \frac{x}{2}$
viz
$\sin \mathrm{x}=\frac{2 \mathrm{u}}{1+\mathrm{u}^{2}}$
$\cos \mathrm{x}=\frac{1-\mathrm{u}^{2}}{1+\mathrm{u}^{2}}$
$\tan \mathrm{x}=\frac{2 \mathrm{u}}{1-\mathrm{u}^{2}}$
$\cot \mathrm{x}=\frac{1-\mathrm{u}^{2}}{2 \mathrm{u}}$
$\sec x=\frac{1+u^{2}}{1-u^{2}}$
$\csc \mathrm{x}=\frac{1+\mathrm{u}^{2}}{2 \mathrm{u}}$
\&
$\mathrm{dx}=\frac{2 \mathrm{du}}{1+\mathrm{u}^{2}}$
so that some trig integrands
may be rationalized by this substitution

GG88-23

- a geometric description of the substitution
$\mathrm{u}=\tan \frac{\mathrm{X}}{2}$
is given by the labeled right triangle

\square the six basic hyp functions
may be rationalized
by the substitution
$u=\tanh \frac{\mathrm{x}}{2}$
viz
$\sinh \mathrm{x}=\frac{2 \mathrm{u}}{1-\mathrm{u}^{2}} \quad \cosh \mathrm{x}=\frac{1+\mathrm{u}^{2}}{1-\mathrm{u}^{2}}$
$\tanh \mathrm{x}=\frac{2 \mathrm{u}}{1+\mathrm{u}^{2}}$
$\operatorname{coth} \mathrm{x}=\frac{1+\mathrm{u}^{2}}{2 \mathrm{u}}$
$\operatorname{sech} \mathrm{x}=\frac{1-\mathrm{u}^{2}}{1+\mathrm{u}^{2}}$
$\operatorname{csch} \mathrm{x}=\frac{1-\mathrm{u}^{2}}{2 \mathrm{u}}$
\&
$\mathrm{dx}=\frac{2 \mathrm{du}}{1-\mathrm{u}^{2}}$
so that some hyp integrands
may be rationalized by this substitution

GG88-25

- a geometric description of the substitution
$\mathrm{u}=\tanh \frac{\mathrm{X}}{2}$
is given by the labeled right triangle

\square a definite integral the area of the region in QI bounded by the curve $\mathrm{y}=\mathrm{gd} \mathrm{x}$
\& the horizontal line $\mathrm{y}=\frac{\pi}{2}$
\& the y - axis
=
the area of
the region in QI bounded by
the curve $\mathrm{y}=\mathrm{gd}^{-1} \mathrm{x}$
\& the vertical line $\mathrm{x}=\frac{\pi}{2}$
\& the x -axis

GG88-27

$$
\begin{aligned}
& =\int_{0}^{\infty}\left(\frac{\pi}{2}-\mathrm{gdx}\right) \mathrm{dx} \\
& =\int_{0}^{\frac{\pi}{2}} \mathrm{gd}^{-1} \mathrm{xdx} \\
& =2 \int_{0}^{\frac{\pi}{4}} \log \cot \mathrm{xdx} \\
& =2 \notin \\
& \approx 1.83+ \\
& \mathrm{wh} \\
& \notin \\
& ={ }_{\mathrm{cl}} \text { Catalan's constant } \\
& ={ }_{\mathrm{df}} 1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots \\
& =\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \frac{1}{(2 \mathrm{n}+1)^{2}} \\
& =0.9159655941772190150546035+
\end{aligned}
$$

\square further uses of the gudermannian pop up in various places such as the theory of elliptic functions, noneuclidean geometry, physics of the pendulum, and cartography; indeed in the Mercator map projection the vertical distance from the equator of a location on the chart
is given by $\mathrm{gd}^{-1} \vartheta$
where ϑ is the latitude of the location

GG88-29
\square bioline
Christoph Gudermann
1798-1852
German
analyst, geometer; teacher of Weierstrass;
name 'gudermannian' and notation 'gd' in present usage were introduced by Cayley in honor of Gudermann's work in the area

\square IMHO

the gudermannian should appear in several exercises scattered thruout the undergraduate calculus courses; for example, it helps to clarify that mysterious formula for the indefinite integral of the secant and indeed provides a short formula for it;
likewise for the cosecant; it correlates the trig functions and the hyperbolic functions
in a pleasant and surprising manner

