Good Things about the Gudermannian

#88 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2003

GG88-1 (31)

© 2003 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

 \Box x,y,u,t \in real nr var

□ the real gudermannian function $=_{ab} \text{ the gudermannian}$ $=_{pr} \text{ goohd - er - MAHN - ee - en}$ $=_{dn} \text{ gd } x \quad (-\infty < x < \infty)$ $\text{ wh gd } \leftarrow \underline{gudermannian}$ $=_{rd} \text{ goohd - er } x$ $=_{df} \text{ Tan}^{-1} \sinh x$ \Box the real gudermannian constitutes a real bridge between the real trigonometric functions and the real hyperbolic functions viz y = gdx \Rightarrow $\sin y = \tanh x$ $\cos y = \operatorname{sech} x$ $\tan y = \sinh x$ $\cot y = \operatorname{csch} x$ $\sec y = \cosh x$ $\csc y = \coth x$ & $\tan\frac{y}{2} = \tanh\frac{x}{2}$ $\cot \frac{y}{2} = \coth \frac{x}{2}$

□ the correspondence between the trig fcns and the hyp fcns via the gudermannian produces a correspondence between trig identities and hyp identities; eg looking at the three trig pythagorean identities trig: $\sin^2 x + \cos^2 x = 1$ hyp: $\tanh^2 x + \sec h^2 x = 1$

trig:
$$1 + \tan^2 x = \sec^2 x$$

hyp: $1 + \sinh^2 x = \cosh^2 x$

trig:
$$1 + \cot^2 x = \csc^2 x$$

hyp: $1 + \csc h^2 x = \coth^2 x$

□ the corespondence between trig fcns & hyp fcns via the gudermannian has a geometric description which is given by the following three labeled right triangles

GG88-7

 \Box forms of the gudermannian

gd x $= \sin^{-1} \tanh x$ $= \cos^{-1} \operatorname{sec} h x$ $= \tan^{-1} \sinh x$ $= \cot^{-1} \operatorname{csc} h x$ $= \sec^{-1} \cosh x$ $= \csc^{-1} \coth x$ $= 2 \tan^{-1} \tanh \frac{x}{2}$ $= 2 \tan^{-1} e^{x} - \frac{\pi}{2}$ $= \int_0^x \operatorname{sech} t \, dt$

(domains & ranges have to be specified)

 \square forms of the inverse gudermannian

$$gd^{-1} x$$

= sinh⁻¹ tan x
= cosh⁻¹ sec x
= tanh⁻¹ sin x
= coth⁻¹ csc x
= sech⁻¹ cos x
= csch⁻¹ cot x
= 2 tanh⁻¹ tan $\frac{x}{2}$
= log tan $\left(\frac{x}{2} + \frac{\pi}{4}\right)$
= log (sec x + tan x)
= $\int_{0}^{x} \sec t dt$

(domains & ranges have to be specified)

 \Box properties of the gudermannian y = gd x and its graph

 Δ the function y = gd x has these properties

- domain: $-\infty < x < \infty$
- range: $-\frac{\pi}{2} < y < \frac{\pi}{2}$
- class: analytic
- parity: odd
- strictly increasing
- gd(0) = 0
- $gd x > 0 \Leftrightarrow x > 0$
- $gd x < 0 \Leftrightarrow x < 0$
- $\exists \lim_{x \to \infty} \operatorname{gd} x = \frac{\pi}{2}$
- $\exists \lim_{x \to -\infty} \operatorname{gd} x = -\frac{\pi}{2}$

 Δ the graph of y = gd x has these properties

- thru origin with slope 1
- symmetric wrt origin
- steadily rising
- asymptotic to horizontal line $y = \frac{\pi}{2}$
- asymptotic to horizontal line y = $-\frac{\pi}{2}$
- flex point at origin
- concave down for x > 0
- concave up for x < 0

• parametric equations, first form

$$\begin{cases} x = 2 \tanh^{-1} t \\ y = 2 \tan^{-1} t \\ wh |t| < 1 \end{cases}$$

• parametric equations, second form

$$\begin{cases} x = 2 \operatorname{coth}^{-1} t \\ y = 2 \operatorname{cot}^{-1} t \\ wh |t| > 1 \end{cases}$$

note: the values of the inv trig fcns $\tan^{-1}t \& \cot^{-1}t$ are to be properly chosen

 \Box do - it - yourself sketch: graph of the gudermannian $y = gd x \quad (-\infty < x < \infty)$ У $\frac{\pi}{2}$ $\rightarrow x$ $\frac{\pi}{2}$

GG88-13

 \Box properties of the inverse gudermannian y = gd⁻¹ x and its graph

 Δ the function $y = gd^{-1} x$ has these properties

- domain: $-\frac{\pi}{2} < x < \frac{\pi}{2}$
- range: $-\infty < y < \infty$
- class: analytic
- parity: odd
- strictly increasing
- $gd^{-1}(0) = 0$
- $gd^{-1} x > 0 \iff x > 0$
- $gd^{-1}x < 0 \Leftrightarrow x < 0$
- $gd^{-1}x \to \infty$ as $x \uparrow \frac{\pi}{2}$
- $gd^{-1}x \to -\infty$ as $x \downarrow -\frac{\pi}{2}$

 Δ the graph of y = gd⁻¹x has these properties

- thru origin with slope 1
- symmetric wrt origin
- steadily rising
- asymptotic to vertical line x = $\frac{\pi}{2}$
- asymptotic to vertical line x = $-\frac{\pi}{2}$
- flex point at origin
- concave up for x > 0
- concave down for x < 0

• parametric equations, first form

$$\begin{cases} x = 2 \tan^{-1} t \\ y = 2 \tanh^{-1} t \\ wh |t| < 1 \end{cases}$$

• parametric equations, second form

$$\begin{cases} x = 2 \cot^{-1} t \\ y = 2 \coth^{-1} t \\ wh |t| > 1 \end{cases}$$

note: the values of the inv trig fcns $\tan^{-1}t \& \cot^{-1}t$ are to be properly chosen

□ do - it - yourself sketch: graph of the inverse gudermannian

 \Box derivatives and differentials

•
$$\frac{d}{dx}gdx = \operatorname{sech} x$$

•
$$\frac{d}{dx}gd^{-1}x = \sec x$$

- dgdx = sechxdx
- $dgd^{-1}x = \sec x \, dx$

 \Box indefinite and definite integrals

•
$$\int \operatorname{sech} x \, dx = \operatorname{gd} x + C$$

•
$$\int \sec x \, dx = \operatorname{gd}^{-1} x + C$$

•
$$\int_0^x \operatorname{sech} t \, dt = \operatorname{gd} x$$

•
$$\int_0^x \sec t \, dt = \operatorname{gd}^{-1} x$$

 \Box the Maclaurin series for gd x

gd x

$$= x - \frac{x^3}{6} + \frac{x^5}{24} - \frac{61x^7}{5040} + \cdots$$

$$=\sum_{n=0}^{\infty} \frac{E_{2n}}{(2n+1)!} x^{2n+1}$$

$$IC:-1 < x < 1$$

 \Box the Maclaurin series for $\mathrm{gd}^{-1}\,\mathrm{x}$

$$gd^{-1}x$$

= $x + \frac{x^3}{6} + \frac{x^5}{24} + \frac{61x^7}{5040} + \cdots$

$$= \sum_{n=0}^{\infty} (-1)^n \frac{E_{2n}}{(2n+1)!} x^{2n+1}$$

$$IC:-\frac{\pi}{2} < x < \frac{\pi}{2}$$

 \Box more formulas

•
$$\tanh \frac{1}{2}x = \tan \frac{1}{2}gdx \& \coth \frac{1}{2}x = \cot \frac{1}{2}gdx$$

• e^x

- $= \sec \operatorname{gd} x + \tan \operatorname{gd} x$
- $= \frac{1 + \sin g d x}{\cos g d x}$
- $= \frac{\cos gd x}{1 \sin gd x}$

$$= \tan\left(\frac{1}{-\operatorname{sd} x} + \frac{\pi}{-1}\right)$$

$$= \tan\left(\frac{-\operatorname{gd} x + -}{4}\right)$$

•
$$gd^{-1}\left(x+\frac{\pi}{2}\right) = \log\left(\csc x - \cot x\right)$$

•
$$\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{gd}^{-1}\left(\mathrm{x} + \frac{\pi}{2}\right) = \csc \mathrm{x}$$

•
$$\int \csc x \, dx = g d^{-1} \left(x + \frac{\pi}{2} \right) + C$$

□ the six basic trig functions may be rationalized by the substitution

$$u = tan \frac{x}{2}$$

viz

$\sin x = \frac{2u}{1+u^2}$	$\cos x = \frac{1 - u^2}{1 + u^2}$
$\tan x = \frac{2u}{1 - u^2}$	$\cot x = \frac{1 - u^2}{2u}$
$\sec x = \frac{1+u^2}{1-u^2}$	$\csc x = \frac{1 + u^2}{2u}$
&	

 $dx = \frac{2 \, du}{1 + u^2}$

so that some trig integrands may be rationalized by this substitution

• a geometric description of the substitution

$$u = tan \frac{x}{2}$$

is given by the labeled right triangle

GG88-24

the six basic hyp functionsmay be rationalizedby the substitution

$$u = \tanh \frac{x}{2}$$

viz

$\sinh x = \frac{2u}{1 - u^2}$	$\cosh x = \frac{1+u^2}{1-u^2}$
$\tanh x = \frac{2u}{1+u^2}$	$\coth x = \frac{1 + u^2}{2u}$
$\operatorname{sech} x = \frac{1 - u^2}{1 + u^2}$	$\operatorname{csch} x = \frac{1 - u^2}{2u}$
&	

 $dx = \frac{2 \, du}{1 - u^2}$

so that some hyp integrands may be rationalized by this substitution

• a geometric description of the substitution

$$u = tanh \frac{x}{2}$$

is given by the labeled right triangle

GG88-26


```
the area of
the region in QI bounded by
the curve y = gd x
& the horizontal line y = \frac{\pi}{2}
& the y - axis
=
the area of
the region in QI bounded by
the curve y = gd^{-1} x
& the vertical line x = \frac{\pi}{2}
& the x - axis
```

$$= \int_{0}^{\infty} \left(\frac{\pi}{2} - g d x\right) dx$$
$$= \int_{0}^{\frac{\pi}{2}} g d^{-1} x dx$$
$$= 2 \int_{0}^{\frac{\pi}{4}} \log \cot x dx$$
$$= 2 \phi$$
$$\approx 1.83 + wh$$

¢ =_{cl} Catalan's constant =_{df} $1 - \frac{1}{3^2} + \frac{1}{5^2} - \frac{1}{7^2} + \cdots$ = $\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)^2}$ = 0.91596 55941 77219 01505 46035 +

G88 - 28

□ further uses of the gudermannian pop up in various places such as the theory of elliptic functions, noneuclidean geometry, physics of the pendulum, and cartography; indeed in the Mercator map projection the vertical distance from the equator of a location on the chart is given by gd⁻¹ ϑ where ϑ is the latitude of the location bioline
Christoph Gudermann
1798 - 1852
German
analyst, geometer; teacher of Weierstrass;
name 'gudermannian' and notation 'gd'
in present usage were introduced by Cayley
in honor of Gudermann's work in the area

the gudermannian should appear in several exercises scattered thruout the undergraduate calculus courses; for example, it helps to clarify that mysterious formula for the indefinite integral of the secant and indeed provides a short formula for it; likewise for the cosecant; it correlates the trig functions and the hyperbolic functions in a pleasant and surprising manner