Triple-Treat Triangles
\#84 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG84-1 (63)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG84-2

\square by a triple - treat triangle
we here mean
a triangle that has
good angles
\&
good trig fcns of angles
\&
good ratio of sides;
by good
we here mean
nice \& easy to express
and
nice \& easy to find and
nice \& easy to use and
nice \& easy to remember; our consideration of triangles
has mostly to do with their shape \& little to do with their size

GG84-3
\square ten notable triangles appear in the following rhombi when diagonals are drawn:

- a rhombus with all vertex angles of 90°
$=$ a square
- a rhombus with adjacent vertex angles of 60° and 120°
- a rhombus with adjacent vertex angles of 45° and 135°
- a rhombus with adjacent vertex angles of 30° and 150°
note that simple fractions of a right angle
give the above acute angles
viz
$\frac{1}{2} \times 90^{\circ}=45^{\circ}$
$\frac{1}{3} \times 90^{\circ}=30^{\circ}$
$\frac{2}{3} \times 90^{\circ}=60^{\circ}$
\&
their supplements
give the above obtuse angles
GG84-4
- an isosceles right triangle
$=\mathrm{a} 45-45-90$ degree triangle
$=\mathrm{a}$ one - one - two angle triangle
has its opposite sides in the ratio
$1: 1: \sqrt{2}$
- to construct an isosceles right triangle: draw a square \& draw a diagonal

GG84-5

- from
square
to
isosceles right triangle
in
three pictures \& two steps

square

square with diagonal

GG84-7

isosceles right triangle

GG84-8

- the six basic trig fens of 45°

$$
\begin{aligned}
& \sin 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
& \cos 45^{\circ}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}
\end{aligned}
$$

$$
\tan 45^{\circ}=1
$$

$$
\cot 45^{\circ}=1
$$

$$
\sec 45^{\circ}=\sqrt{2}
$$

$$
\csc 45^{\circ}=\sqrt{2}
$$

- an equilateral triangle
$=$ an equiangular triangle
$=\mathrm{a}$ 60-60-60 degree triangle
$=\mathrm{a}$ one - one - one angle triangle
has its opposite sides in the ratio
1: 1: 1
- to construct an equilateral triangle: draw a rhombus with vertex angles 60° and 120° \& draw the shorter diagonal
- from
rhombus
to
equilateral triangle
in
three pictures \& two steps

rhombus

GG84-11

rhombus with shorter diagonal

GG84-12

equilateral triangle

GG84-13

- an isosceles trine triangle
$=$ a $30-30-120$ degree triangle
$=$ a one - one - four angle triangle has its opposite sides in the ratio
$1: 1: \sqrt{3}$
- to construct an isosceles trine triangle: draw a rhombus
with vertex angles 60° and 120°
\&
draw the longer diagonal

GG84-14

- from
rhombus
to
isosceles trine triangle
in
three pictures \& two steps

rhombus

GG84-15

rhombus with longer diagonal

GG84-16

isosceles trine trangle

GG84-17

- a sextile right triangle
$=$ a $30-60-90$ degree triangle
$=$ a one - two - three angle triangle
has its opposite sides in the ratio
$1: \sqrt{3}: 2$
- to construct
a sextile right triangle: draw a rhombus
with vertex angles 60° and 120°
\&
draw both diagonals

GG84-18

- from
rhombus
to
sextile right triangle
in
three pictures \& two steps

rhombus

GG84-19

diagonals \perp bisectors of each other
rhombus with both diagonals

GG84-20

sextile right triangle

GG84-21

- the six basic trig fens of the complementary angles 30° and 60°

$$
\sin 30^{\circ}=\cos 60^{\circ}=\frac{1}{2}
$$

$\cos 30^{\circ}=\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
$\tan 30^{\circ}=\cot 60^{\circ}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$
$\cot 30^{\circ}=\tan 60^{\circ}=\sqrt{3}$
$\sec 30^{\circ}=\csc 60^{\circ}=\frac{2}{\sqrt{3}}=\frac{2 \sqrt{3}}{3}$
$\csc 30^{\circ}=\sec 60^{\circ}=2$

GG84-22

- an isosceles semiright triangle
$=$ a 45-67.5-67.5 degree triangle
$=$ a two - three - three angle triangle has its opposite sides in the ratio
$\sqrt{2-\sqrt{2}}: 1: 1$

- to construct

 an isosceles semiright triangle:draw a rhombus
with vertex angles 45° and 135°
\&
draw the shorter diagonal

GG84-23

- from
rhombus

to

isosceles semiright triangle
in
three pictures \& two steps

rhombus

GG84-24

short diag $=\sqrt{2-\sqrt{2}}$
rhombus with shorter diagonal

GG84-25

isosceles semiright triangle

GG84-26

- an isosceles sesquiright triangle
$=$ a $22.5-22.5-135$ degree triangle
$=$ a one - one - six angle triangle has its opposite sides in the ratio
$1: 1: \sqrt{2+\sqrt{2}}$
- to construct an isosceles sesquiright triangle:
draw a rhombus
with vertex angles 45° and 135°
\&
draw the longer diagonal

GG84-27

- from
rhombus

to

isosceles sesquiright triangle
in
three pictures \& two steps

rhombus

GG84-28

long diag $=\sqrt{2+\sqrt{2}}$
rhombus with longer diagonal

GG84-29

isosceles sesquiright triangle

GG84-30

- a quarteright right triangle
$=$ a 22.5-67.5-90 degree triangle
$=$ a one - three - four angle triangle has its opposite sides in the ratio

$$
\sqrt{2-\sqrt{2}}: \sqrt{2+\sqrt{2}}: 2
$$

- to construct a quarteright right triangle: draw a rhombus with vertex angles 45° and 135° \& draw both diagonals
- from
rhombus
to
quarteright right triangle
in
three pictures \& two steps

rhombus

GG84-32

diagonals \perp bisectors of each other
short halfdiag $=\sqrt{2-\sqrt{2}}$
long halfdiag $=\sqrt{2+\sqrt{2}}$
rhombus with both diagonals

GG84-33

quarteright right triangle

- the six basic trig fcns of the complementary angles 22.5° and 67.5°
$\sin 22.5^{\circ}=\cos 67.5^{\circ}=\frac{\sqrt{2-\sqrt{2}}}{2}$
$\cos 22.5^{\circ}=\sin 67.5^{0}=\frac{\sqrt{2+\sqrt{2}}}{2}$
$\tan 22.5^{\circ}=\cot 67.5^{\circ}=\sqrt{2}-1$
$\cot 22.5^{\circ}=\tan 67.5^{0}=\sqrt{2}+1$
$\sec 22.5^{\circ}=\csc 67.5^{\circ}=\sqrt{4-2 \sqrt{2}}$
$\csc 22.5^{\circ}=\sec 67.5^{\circ}=\sqrt{4+2 \sqrt{2}}$

GG84-35

- an isosceles semisextile triangle
$=$ a 30-75-75 degree triangle
$=$ a two - five - five angle triangle
has its opposite sides in the ratio
$\sqrt{2-\sqrt{3}}: 1: 1$
- to construct an isosceles semisextile triangle:
draw a rhombus
with vertex angles 30° and 150°
\&
draw the shorter diagonal

GG84-36

- from
rhombus
to
isosceles semisextile triangle
in
three pictures \& two steps

rhombus

GG84-37

short diag $=\sqrt{2-\sqrt{3}}$
rhombus with shorter diagonal

GG84-38

isosceles semisextile triangle

GG84-39

- an isosceles sesquicental triangle
$=$ a 15-15-150 degree triangle
$=$ a one - one - ten angle triangle has its opposite sides in the ratio
$1: 1: \sqrt{2+\sqrt{3}}$
- to construct an isosceles sesquicental triangle: draw a rhombus with vertex angles 30° and 150° \& draw the longer diagonal

GG84-40

- from
rhombus
to
isosceles sesquicental triangle
in
three pictures \& two steps

rhombus

GG84-41

long diag $=\sqrt{2+\sqrt{3}}$
rhombus with longer diagonal

GG84-42

isosceles sesquicental triangle

- a quartersextile right triangle
$=\mathrm{a}$ 15-75-90 degree triangle
$=$ a one - five - six angle triangle has its opposite sides in the ratio
$\sqrt{2-\sqrt{3}}: \sqrt{2+\sqrt{3}}: 2$
- to construct
a quartersextile right triangle:
draw a rhombus
with vertex angles 30° and 150°
\&
draw both diagonals

GG84-44

- from
rhombus
to
quartersextile right triangle
in
three pictures \& two steps

rhombus

GG84-45

short halfdiag $=\sqrt{2-\sqrt{3}}$
long halfdiag $=\sqrt{2+\sqrt{3}}$
rhombus with both diagonals

GG84-46

quartersextile right triangle

GG84-47

- the six basic trig fcns of the complementary angles 15° and 75°

$$
\begin{aligned}
& \sin 15^{\circ}=\cos 75^{\circ}=\frac{\sqrt{2-\sqrt{3}}}{2} \\
& \cos 15^{\circ}=\sin 75^{\circ}=\frac{\sqrt{2+\sqrt{3}}}{2}
\end{aligned}
$$

$$
\tan 15^{\circ}=\cot 75^{\circ}=7-4 \sqrt{3}
$$

$$
\cot 15^{\circ}=\tan 75^{\circ}=7+4 \sqrt{3}
$$

$$
\sec 15^{\circ}=\csc 75^{\circ}=2 \sqrt{2-\sqrt{3}}
$$

$$
\csc 15^{\circ}=\sec 75^{\circ}=2 \sqrt{2+\sqrt{3}}
$$

\square the golden ratio
$={ }_{\mathrm{df}}$ the positive real number x st
$\frac{\mathrm{x}+1}{\mathrm{x}}=\frac{\mathrm{x}}{1}$
which has the geometric interpretation of
dividing a line segment of whole length $x+1$
into subsegments
of larger length x and of smaller length 1 st their lengths satisfy the proportion
the whole is to the larger
as
the larger is to the smaller;
this gives the quadratic equation
$x^{2}-x-1=0$
with unique positive root
$\mathrm{x}=\frac{1+\sqrt{5}}{2}=1.61803+$
which is denoted by the lowercase Greek letter phi

φ

and which is called the golden ratio

GG84-49

- note that the golden ratio
$\varphi=\frac{1}{2}(1+\sqrt{5})=1.61803+\approx 1.6=\frac{8}{5}=8: 5$
- a rectangle whose sides are in the ratio $\varphi: 1$ is called
a golden rectangle; a golden rectangle is considered to be esthetically pleasing
\& was so recognized by the ancient Greeks

GG84-50
\square how to compute $\cos 36^{\circ}$ exactly
using only trig \& algebra
set $\mathrm{A}=36^{\circ}$
then
$5 \mathrm{~A}=180^{\circ}$
$3 \mathrm{~A}=180^{\circ}-2 \mathrm{~A}$
$\cos 3 \mathrm{~A}=-\cos 2 \mathrm{~A}$
$\cos 3 \mathrm{~A}+\cos 2 \mathrm{~A}=0$
$4 \cos ^{3} A-3 \cos A+2 \cos ^{2} A-1=0$
$4 \cos ^{3} A+2 \cos ^{2} A-3 \cos A-1=0$
set $\mathrm{x}=\cos \mathrm{A}$
then
$4 \mathrm{x}^{3}+2 \mathrm{x}^{2}-3 \mathrm{x}-1=0$
$(x+1)\left(4 x^{2}-2 x-1\right)=0$
$4 x^{2}-2 x-1=0$
$x=\frac{2+\sqrt{20}}{8}=\frac{1+\sqrt{5}}{4}=\frac{\varphi}{2}$
$\therefore \cos 36^{\circ}=\frac{1+\sqrt{5}}{4}=\frac{\varphi}{2}$
GG84-51
\square how to compute $\cos 36^{\circ}$ exactly
using a little bit of geometry
consider an isosceles triangle
with apex angle $=36^{\circ}$
with each base angle $=72^{\circ}$;
bisect a base angle
\& consider how the bisector divides the opposite side; take the segment with endpoint at the apex to be x \& the segment with endpoint at the base to be 1 ; by similar triangles
$\frac{x+1}{x}=\frac{x}{1}$ which is the golden ratio proportion \& thus
$\mathrm{x}=\varphi ;$
by the law of sines
$\frac{\sin 36^{\circ}}{1}=\frac{\sin 72^{\circ}}{\varphi}=\frac{2 \sin 36^{\circ} \cos 36^{\circ}}{\varphi} \&$ thus
$\cos 36^{\circ}=\frac{\varphi}{2}=\frac{1+\sqrt{5}}{4}$

GG84-52
\square an isosceles triangle
whose slant side is to the base as $\varphi: 1$ is called
a golden triangle; the apex angle of a golden triangle is 36° \& each base angle is 72°

- a golden triangle
$=\mathrm{a} 36-72-72$ degree triangle
$=\mathrm{a}$ one - two - two angle triangle
has its opposite sides in the ratio
$1: \varphi: \varphi$

GG84-53

- consider a golden triangle with base 1
$\&$ slant $\operatorname{sides} \varphi=\frac{1}{2}(1+\sqrt{5})$
then
the altitude to the base
$=\frac{1}{2} \sqrt{4 \varphi+3}=\frac{1}{2} \sqrt{5+2 \sqrt{5}}$
\&
the altitudes to the slant sides
$=\frac{1}{2} \sqrt{\varphi+2}=\frac{1}{4} \sqrt{10+2 \sqrt{5}}$
- the following two triangles appear in a golden triangle when the altitudes are drawn
* a 36-54-90 degree triangle
$=$ a two - three - five angle triangle has its opposite sides in the ratio
$\sqrt{3-\varphi}: \varphi: 2$
* a 18-72-90 degree triangle
$=$ a one - four - five angle triangle has its opposite sides in the ratio
$1: \sqrt{4 \varphi+3}: 2 \varphi$
- the six basic trig fcns of the complementary angles 36° and 54°

$$
\sin 36^{\circ}=\cos 54^{\circ}=\frac{\sqrt{3-\varphi}}{2}
$$

$$
\cos 36^{\circ}=\sin 54^{0}=\frac{\varphi}{2}
$$

$$
\tan 36^{\circ}=\cot 54^{\circ}=\frac{\sqrt{3-\varphi}}{\varphi}
$$

$$
\cot 36^{\circ}=\tan 54^{0}=\frac{\varphi}{\sqrt{3-\varphi}}
$$

$$
\sec 36^{\circ}=\csc 54^{\circ}=\frac{2}{\varphi}
$$

$$
\csc 36^{\circ}=\sec 54^{\circ}=\frac{2}{\sqrt{3-\varphi}}
$$

- the six basic trig fcns of the complementary angles 18° and 72°

$$
\begin{aligned}
& \sin 18^{\circ}=\cos 72^{\circ}=\frac{1}{2 \varphi} \\
& \cos 18^{\circ}=\sin 72^{\circ}=\frac{\sqrt{4 \varphi+3}}{2 \varphi}
\end{aligned}
$$

$\tan 18^{\circ}=\cot 72^{\circ}=\frac{1}{\sqrt{4 \varphi+3}}$
$\cot 18^{\circ}=\tan 72^{\circ}=\sqrt{4 \varphi+3}$

$$
\begin{aligned}
& \sec 18^{\circ}=\csc 72^{\circ}=\frac{2 \varphi}{\sqrt{4 \varphi+3}} \\
& \csc 18^{\circ}=\sec 72^{\circ}=2 \varphi
\end{aligned}
$$

\square consider
an isosceles triangle
with each slantside $=\mathrm{a}$
with base $=\mathrm{b}$
with apex angle $=\alpha$
with each base angle $=\beta$;
then
by the law of cosines
$\cos \alpha=\frac{2 \mathrm{a}^{2}-\mathrm{b}^{2}}{2 \mathrm{a}^{2}}$
from which the trig fens of α and β
can be computed
viz

GG84-58

$$
\begin{aligned}
& \sin \alpha=\frac{b \sqrt{4 a^{2}-b^{2}}}{2 a^{2}} \\
& \cos \alpha=\frac{2 a^{2}-b^{2}}{2 a^{2}} \\
& \tan \alpha=\frac{b \sqrt{4 a^{2}-b^{2}}}{2 a^{2}-b^{2}} \\
& \cot \alpha=\frac{2 a^{2}-b^{2}}{b \sqrt{4 a^{2}-b^{2}}} \\
& \sec \alpha=\frac{2 a^{2}}{2 a^{2}-b^{2}} \\
& \csc \alpha=\frac{2 a^{2}}{b \sqrt{4 a^{2}-b^{2}}}
\end{aligned}
$$

$$
\sin \beta=\frac{\sqrt{4 a^{2}-b^{2}}}{2 \mathrm{a}}
$$

$$
\cos \beta=\frac{\mathrm{b}}{2 \mathrm{a}}
$$

$$
\tan \beta=\frac{\sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}}{\mathrm{~b}}
$$

$$
\cot \beta=\frac{\mathrm{b}}{\sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}}
$$

$$
\sec \beta=\frac{2 \mathrm{a}}{\mathrm{~b}}
$$

$$
\csc \beta=\frac{2 \mathrm{a}}{\sqrt{4 \mathrm{a}^{2}-\mathrm{b}^{2}}}
$$

GG84-60
\square an interesting scalene triangle that is not a right triangle

- the angles $\mathrm{A}, \mathrm{B}, \mathrm{C}$ of any triangle ABC satisfy the identity
$\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}$
which expresses the fact that
for any triangle
the sum of the tangents of the angles
equals
their product;
a striking triple of numbers
such that their sum equals their product
is
1, 2, 3
- the tangent - one - two - three triangle
has
tangents of angles equal to
1, 2, 3
\&
angles
$\tan ^{-1} 1=45^{\circ}$
$\tan ^{-1} 2 \approx 63^{\circ}$
$\tan ^{-1} 3 \approx 72^{\circ}$
\&
angle sines and sides in the ratio
$\frac{1}{\sqrt{2}}: \frac{2}{\sqrt{5}}: \frac{3}{\sqrt{10}}$
\square three triangles in a golden rectangle
- consider a golden rectangle with base $\varphi \&$ height 1
- drawing one diagonal produces a right triangle
with legs 1 and φ \& hypotenuse $\sqrt{\varphi+2}$
and with acute angles whose tangents are
$\varphi \& \frac{1}{\varphi}$
- drawing two diagonals produces two isosceles triangles, one acute - angled and one obtuse - angled;
the acute - angled triangle has sides $1, \frac{1}{2} \sqrt{\varphi+2}, \frac{1}{2} \sqrt{\varphi+2}$
whose opposite angles have tangents $2, \varphi, \varphi$;
the obtuse - angled triangle has sides $\varphi, \frac{1}{2} \sqrt{\varphi+2}, \frac{1}{2} \sqrt{\varphi+2}$
whose opposite angles have tangents $-2, \frac{1}{\varphi}, \frac{1}{\varphi}$

GG84-63

