Deradicalizing Radicals

\#82 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG82-1 (48)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG82-2

\square we consider certain forms of
finite \& infinite nested pth powers; all considerations are assumed to be about real numbers

\&

are assumed to stay in the real field
\square we consider a special form of nested pth powers as defined below

- the basic iterated step: replace something by
something plus a coefficient times a pth power
- start with

$$
\mathrm{a}_{0}=\mathrm{x}_{0}
$$

- replace x_{0} by $x_{0}+c_{1} x_{1}{ }^{p}$ to get $\mathrm{a}_{1}=\mathrm{x}_{0}+\mathrm{c}_{1} \mathrm{x}_{1}{ }^{\mathrm{p}}$
- replace x_{1} by $x_{1}+c_{2} x_{2}{ }^{p}$ to get
$\mathrm{a}_{2}=\mathrm{x}_{0}+\mathrm{c}_{1}\left(\mathrm{x}_{1}+\mathrm{c}_{2} \mathrm{x}_{2}{ }^{\mathrm{p}}\right)^{\mathrm{p}}$
- replace x_{2} by $x_{2}+c_{3} x_{3}{ }^{p}$ to get
$a_{3}=x_{0}+c_{1}\left(x_{1}+c_{2}\left(x_{2}+c_{3} x_{3}\right)^{p}\right)^{p}$
etc
- if the process is ended in finitely many steps, then a finite nested pth power is obtained;
if the process continues to an infinite sequence of the $\mathrm{a}^{\prime} \mathrm{s}$, then an infinite nested pth power is obtained and the limit of the a's if it exists
viz
$\lim _{\mathrm{k} \rightarrow \infty} \mathrm{a}_{\mathrm{k}}$ (wh $\mathrm{k} \in$ nonneg int var) iie is denoted
$x_{0}+c_{1}\left(x_{1}+c_{2}\left(x_{2}+c_{3}\left(x_{3}+\cdots\right)^{p}\right)^{p}\right)^{p}$
\square the above notion of nested pth powers
subsumes the notions of
series \& continued fraction
- if $\mathrm{p} \&$ the c 's are all $=1$, then the a's are the partial sums of the series
$x_{0}+x_{1}+x_{2}+x_{3}+\cdots$
viz
$a_{0}=x_{0}$
$\mathrm{a}_{1}=\mathrm{x}_{0}+\mathrm{x}_{1}$
$\mathrm{a}_{2}=\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}$
$\mathrm{a}_{3}=\mathrm{x}_{0}+\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}$
etc
- if $\mathrm{p}=-1$, then the a's are the convergents of the continued fraction

viz

$$
\mathrm{a}_{0}=\mathrm{x}_{0}
$$

$\mathrm{a}_{1}=\mathrm{x}_{0}+\frac{\mathrm{c}_{1}}{\mathrm{x}_{1}}$
$\mathrm{a}_{2}=\mathrm{x}_{0}+\frac{\mathrm{c}_{1}}{\mathrm{x}_{1}+\frac{\mathrm{c}_{2}}{\mathrm{x}_{2}}}$
$\mathrm{a}_{3}=\mathrm{x}_{0}+\frac{\mathrm{c}_{1}}{\mathrm{x}_{1}+\frac{\mathrm{c}_{2}}{\mathrm{x}_{2}+\frac{\mathrm{c}_{3}}{\mathrm{x}_{3}}}}$
etc

GG82-7

ㅁ Herschfeld's Convergence Theorem let

- $\mathrm{x}_{\mathrm{n}} \in$ nonneg real nr for $\mathrm{n} \in$ nonneg int
- $\mathrm{p} \in$ real nr st $0<\mathrm{p}<1$
- define
$\mathrm{a}_{0}=\mathrm{x}_{0}$
$\mathrm{a}_{1}=\mathrm{x}_{0}+\mathrm{x}_{1}{ }^{\mathrm{p}}$
$\mathrm{a}_{2}=\mathrm{x}_{0}+\left(\mathrm{x}_{1}+\mathrm{x}_{2}{ }^{\mathrm{p}}\right)$
$\mathrm{a}_{3}=\mathrm{x}_{0}+\left(\mathrm{x}_{1}+\left(\mathrm{x}_{2}+\mathrm{x}_{3}{ }^{\mathrm{p}}\right)^{\mathrm{p}}\right)$
etc
then
- $\exists \lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}<\infty$
iff
- $\left\{\left(\mathrm{x}_{\mathrm{n}}\right)^{\mathrm{p}^{\mathrm{n}}} \mid \mathrm{n} \in\right.$ nonneg int $\}$ is bounded

D. quadratically constructible real numbers

- let rereal nr

then

- r is quadratically constructible
$={ }_{\mathrm{df}} \mathrm{r}$ is expressible ito integers and only finitely many applications of the operations of
addition, subtraction, multiplication, division, \& the extraction of the square root of a nonnegative real number to produce a unique nonnegative real number, the process thus always staying in the real field
\square some simple algebraic identities
for the denesting of nested square root expressions assuming all letters stand for positive real numbers \& some obvious inequalities if a minus sign appears
- $\sqrt{\left(a^{2}+b^{2} c\right)+2 a b \sqrt{c}}=a+b \sqrt{c}$
- $\sqrt{\left(a^{2}+b^{2} c\right)-2 a b \sqrt{c}}=a-b \sqrt{c}$
- $\sqrt{(a+b)+2 \sqrt{a b}}=\sqrt{a}+\sqrt{b}$
- $\sqrt{(a+b)-2 \sqrt{a b}}=\sqrt{a}-\sqrt{b}$

- $\sqrt{(a+b+c)+2 \sqrt{a b}-2 \sqrt{a c}-2 \sqrt{b c}}=\sqrt{a}+\sqrt{b}-\sqrt{c}$
- $\sqrt{(a+b+c)-2 \sqrt{a b}-2 \sqrt{a c}+2 \sqrt{b c}}=\sqrt{a}-\sqrt{b}-\sqrt{c}$

eg

- $\sqrt{101+36 \sqrt{5}}=9+2 \sqrt{5}$
- $\sqrt{101-36 \sqrt{5}}=9-2 \sqrt{5}$
- $\sqrt{5+2 \sqrt{6}}=\sqrt{3}+\sqrt{2}$
- $\sqrt{5-2 \sqrt{6}}=\sqrt{3}-\sqrt{2}$
- $\sqrt{15+2 \sqrt{30}+2 \sqrt{20}+2 \sqrt{6}}=\sqrt{10}+\sqrt{3}+\sqrt{2}$
- $\sqrt{15+2 \sqrt{30}-2 \sqrt{20}-2 \sqrt{6}}=\sqrt{10}+\sqrt{3}-\sqrt{2}$
- $\sqrt{15-2 \sqrt{30}-2 \sqrt{20}+2 \sqrt{6}}=\sqrt{10}-\sqrt{3}-\sqrt{2}$

GG82-11
\square Viète's expansion for π
as an infinite product of nested square roots
$\frac{2}{\pi}=a_{1} a_{2} a_{3} \ldots$
wh
$\mathrm{a}_{1}=\sqrt{\frac{1}{2}}$
$\mathrm{a}_{2}=\sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}$
$a_{3}=\sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}}$
etc
to pass from a_{n} to $a_{n+1} w h n \in$ pos int
replace the last $\frac{1}{2}$ by $\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}$

GG82-12
\square the golden ratio
$\varphi=\frac{1}{2}(1+\sqrt{5})$
is characterized as
the positive root of the quadratic equation
$\varphi^{2}=\varphi+1$
which says remarkably:
to square that number, just add one

- writing the equation $\varphi^{2}=\varphi+1$ in the form $\varphi=\sqrt{1+\varphi}$ and repeatedly substituting $\sqrt{1+\varphi}$ for φ on the RHS leads to the sequence
$\varphi=\sqrt{1+\varphi}$
$\varphi=\sqrt{1+\sqrt{1+\varphi}}$
$\varphi=\sqrt{1+\sqrt{1+\sqrt{1+\varphi}}}$
etc
\& the representation of φ as the simplest infinite nested square root
$\varphi=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}$
- writing the equation $\varphi^{2}=\varphi+1$ in the form
$\varphi=1+\frac{1}{\varphi}$
and repeatedly substituting $1+\frac{1}{\varphi}$ for φ on the RHS
leads to the sequence
$\varphi=1+\frac{1}{\varphi}$
$\varphi=1+\frac{1}{1+\frac{1}{\varphi}}$
$\varphi=1+\frac{1}{1+\frac{1}{1+\frac{1}{\varphi}}}$
etc
\& the representation of φ as
the simplest infinite continued fraction
$\varphi=1+\frac{1}{1+\frac{1}{1+\frac{1}{1+\cdots}}}$

GG82-15
\square two equivalent general infinite nested square root evaluations \& special cases

- $\sqrt{a+\sqrt{a+\sqrt{a+\sqrt{a+\cdots}}}}=\frac{1}{2}(1+\sqrt{4 a+1})$
wh $a \in$ pos real nr
- $\sqrt{a(a-1)+\sqrt{a(a-1)+\sqrt{a(a-1)+\cdots}}}=a$ wh $a \in$ real nr >1
- $\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}=\varphi$
- $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}}=2$
- $\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}}=3$
- $\sqrt{12+\sqrt{12+\sqrt{12+\sqrt{12+\cdots}}}}=4$
- $\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+\cdots}}}=5}$

GG82-16
\square a general infinite nested square root evaluation \& special cases

- $\sqrt{1+\mathrm{a} \sqrt{1+(\mathrm{a}+1) \sqrt{1+(\mathrm{a}+2) \sqrt{1+\cdots}}}}=\mathrm{a}+1$ wh $a \in$ nonneg real $n r$
- $\sqrt{1+\sqrt{1+2 \sqrt{1+3 \sqrt{1+\cdots}}}}=2$ for $\mathrm{a}=1$
- $\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+\cdots}}}}=3$ for $\mathrm{a}=2$
- $\sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+\cdots}}}}=4$ for $\mathrm{a}=3$
- $\sqrt{1+4 \sqrt{1+5 \sqrt{1+6 \sqrt{1+\cdots}}}}=5$ for $\mathrm{a}=4$ etc
- note that each numerical line above when squared \& simplified gives the next line

GG82-17
\square a general infinite nested square root evaluation \& special cases

- $\sqrt{a+b \sqrt{a+b \sqrt{a+b \sqrt{a+\cdots}}}}=\frac{1}{2}\left(b+\sqrt{4 a+b^{2}}\right)$
wh $\mathrm{a}, \mathrm{b} \in$ nonneg real nr
- $\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\cdots}}}}=\varphi$ for $\mathrm{a}=1 \& \mathrm{~b}=1$
- $\sqrt{1+2 \sqrt{1+2 \sqrt{1+2 \sqrt{1+\cdots}}}}=1+\sqrt{2}$ for $\mathrm{a}=1 \& \mathrm{~b}=2$
- $\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots}}}=2 \text { for } a=2 \& b=1}$
- $\sqrt{2+2 \sqrt{2+2 \sqrt{2+2 \sqrt{2+\cdots}}}=1+\sqrt{3} \text { for } \mathrm{a}=2 \& \mathrm{~b}=2}$

GG82-18

\square a general infinite nested square root evaluation \& special cases

- $\sqrt{a+\sqrt{b+\sqrt{a+\sqrt{b+\cdots}}}=x}$
$\Leftrightarrow\left(x^{2}-a\right)^{2}-x-b=0 \& x>\sqrt{a}$
wh $\mathrm{a}, \mathrm{b}, \mathrm{x} \in$ pos real nr

GG82-19

- $\sqrt{2+\sqrt{46+\sqrt{2+\sqrt{46+\cdots}}}=3 \text { for } a=2, b=46, x=3}$

- $\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}=3 \text { for } a=6, b=6, x=3}$

GG82-20

- $\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4+\cdots}}}}=1.7579$
more here

GG82-21
\square the sine \& cosine of the angle $\frac{\pi}{18}$ are expressible ito infinite nested square roots

- $\sin \frac{\pi}{18}=\frac{1}{2} \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2-\cdots}}}}=0.17365$
wh the pattern of signs is
$-++-++\cdots$
with repeating period -++
- $\cos \frac{\pi}{18}=\frac{1}{6} \sqrt{3}(1+\sqrt{8-\sqrt{8-\sqrt{8+\sqrt{8-\cdots}}})=0.98481}$
wh the pattern of signs is
$--+--+\cdots$
with repeating period --+

GG82-22
\square one of Ramanujan's simpler formulas evaluating a general infinite nested square root is derived as follows:
let
$\mathrm{a}, \mathrm{n}, \mathrm{x} \in$ nonneg real nr var
note the identity

$$
(\mathrm{x}+\mathrm{n}+\mathrm{a})^{2}=\mathrm{ax}+(\mathrm{n}+\mathrm{a})^{2}+\mathrm{x}(\mathrm{x}+2 \mathrm{n}+\mathrm{a})
$$

taking the square root of each side and then repeatedly replacing x by $x+n$ gives
$x+n+a=\sqrt{a x+(n+a)^{2}+x(x+2 n+a)}$
$x+2 n+a=\sqrt{a(x+n)+(n+a)^{2}+(x+n)(x+3 n+a)}$
$x+3 n+a=\sqrt{a(x+2 n)+(n+a)^{2}+(x+2 n)(x+4 n+a)}$
$x+4 n+a=\sqrt{a(x+3 n)+(n+a)^{2}+(x+3 n)(x+5 n+a)}$
etc
substituing backward
gives the desired expression for
$\mathrm{x}+\mathrm{n}+\mathrm{a}$
as an infinite nested square root

GG82-24
in order to help manage
the unwieldly expressions that arise
define
$\mathrm{r}_{0}=\mathrm{ax}+(\mathrm{n}+\mathrm{a})^{2}$
$\mathrm{r}_{1}=\mathrm{a}(\mathrm{x}+\mathrm{n})+(\mathrm{n}+\mathrm{a})^{2}$
$r_{2}=a(x+2 n)+(n+a)^{2}$
$\mathrm{r}_{3}=\mathrm{a}(\mathrm{x}+3 \mathrm{n})+(\mathrm{n}+\mathrm{a})^{2}$
etc
$\mathrm{s}_{0}=\sqrt{\mathrm{r}_{0}}$
$\mathrm{s}_{1}=\sqrt{\mathrm{r}_{0}+\mathrm{x} \sqrt{\mathrm{r}_{1}}}$
$\mathrm{s}_{2}=\sqrt{\mathrm{r}_{0}+\mathrm{x} \sqrt{\mathrm{r}_{1}+(\mathrm{x}+\mathrm{n}) \sqrt{\mathrm{r}_{2}}}}$
$\mathrm{s}_{3}=\sqrt{\mathrm{r}_{0}+\mathrm{x} \sqrt{\mathrm{r}_{1}+(\mathrm{x}+\mathrm{n}) \sqrt{\mathrm{r}_{2}+(\mathrm{x}+2 \mathrm{n}) \sqrt{\mathrm{r}_{3}}}}}$
etc
then
$\mathrm{x}+\mathrm{n}+\mathrm{a}=\sqrt{\mathrm{r}_{0}+\mathrm{x} \sqrt{\mathrm{r}_{1}+(\mathrm{x}+\mathrm{n}) \sqrt{\mathrm{r}_{2}+(\mathrm{x}+2 \mathrm{n}) \sqrt{\mathrm{r}_{3}+\cdots}}}}$
which is defined to be $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{s}_{\mathrm{k}}$
wh $\mathrm{k} \in$ nonneg int var
GG82-25

\square some special cases of the above Ramanujan formula

taking $\mathrm{a}=0 \& \mathrm{n}=1$

- $\mathrm{x}+1=\sqrt{1+\mathrm{x} \sqrt{1+(\mathrm{x}+1) \sqrt{1+(\mathrm{x}+2) \sqrt{1+(\mathrm{x}+3) \sqrt{1+\cdots}}}}}$ wh $x \in$ nonneg real $n r$
taking $\mathrm{x}=2$
- $3=\sqrt{1+2 \sqrt{1+3 \sqrt{1+4 \sqrt{1+5 \sqrt{1+\cdots}}}}}$

D. constructibility

- a geometric figure in the euclidean plane such as a polygon or an angle
is said to be
constructible by
unmarked straightedge \& adjustable compass
$=$ constructible by straightedge \& compass
$=$ constructible by ruler and compass
$=$ constructible by Platonic instruments
$=$ Platonically constructible
$=$ constructible
iff

GG82-27
the figure can be constructed
by finitely many applications of these two instruments viz
using the unmarked straightedge
to draw the straight line
passing thru two given distinct points
\&
using the adjustable compasses
to draw the circle
with a given point as center
and passing thru a given point

GG82-28
\square T. constructible angles let

- $\alpha \in$ angle in the euclidean plane then
tfsape
- α is Platonically constructible
- the six basic trig fcns of α are each quadratically constructible
- some one basic trig fen of α is quadratically constructible
\square the sine \& cosine of some constructible angles are given below; these constructible angles are
$15^{\circ}, 18^{\mathrm{o}}, 30^{\mathrm{o}}, 36^{\mathrm{o}}, 45^{\mathrm{o}}, 54^{\mathrm{o}}, 60^{\circ}, 72^{\mathrm{o}}, 75^{\circ}$
$\frac{\pi^{\mathrm{r}}}{2^{\mathrm{n}}}$ wh $\mathrm{n} \in \operatorname{posint}$
- drawing the diagonal of a square which is 1 unit on a side gives
$\sin 45^{\circ}=\cos 45^{\circ}$
$=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$
- drawing the altitude of an equilateral triangle which is 2 units on a side gives
$\sin 60^{\circ}=\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
$\cos 60^{\circ}=\sin 30^{\circ}=\frac{1}{2}$

GG82-30

- by repeated use of the trig identities
$\sin \frac{\vartheta}{2}=\sqrt{\frac{1-\cos \vartheta}{2}} \& \cos \frac{\vartheta}{2}=\sqrt{\frac{1+\cos \vartheta}{2}}\left(\frac{\vartheta}{2} \in \mathrm{QI}\right)$
it follows that
$\sin \frac{\pi}{4}=\frac{1}{2} \sqrt{2}$
$\sin \frac{\pi}{8}=\frac{1}{2} \sqrt{2-\sqrt{2}}$
$\sin \frac{\pi}{16}=\frac{1}{2} \sqrt{2-\sqrt{2+\sqrt{2}}}$
$\sin \frac{\pi}{32}=\frac{1}{2} \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}$
etc
$\cos \frac{\pi}{4}=\frac{1}{2} \sqrt{2}$
$\cos \frac{\pi}{8}=\frac{1}{2} \sqrt{2+\sqrt{2}}$
$\cos \frac{\pi}{16}=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{2}}}$
$\cos \frac{\pi}{32}=\frac{1}{2} \sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}$
etc

GG82-31

$$
\begin{aligned}
& -\sin 75^{\circ}=\cos 15^{\circ} \\
& =\cos \left(45^{\circ}-30^{\circ}\right) \\
& =\cos 45^{\circ} \cos 30^{\circ}+\sin 45^{\circ} \sin 30^{\circ} \\
& =\frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}+\frac{\sqrt{2}}{2} \frac{1}{2} \\
& =\frac{1}{4}(\sqrt{6}+\sqrt{2}) \\
& =\frac{1}{4} \sqrt{2}(\sqrt{3}+1)
\end{aligned}
$$

- $\sin 75^{\circ}=\cos 15^{\circ}$
$=\sqrt{\frac{1+\cos 30^{\circ}}{2}}$
$=\sqrt{\frac{1+\frac{\sqrt{3}}{2}}{2}}$
$=\frac{1}{2} \sqrt{2+\sqrt{3}}$
- note $\sqrt{6}+\sqrt{2}=\sqrt{2}(\sqrt{3}+1)=2 \sqrt{2+\sqrt{3}}$

GG82-32

$$
\begin{aligned}
& \cos 75^{\circ}=\sin 15^{\circ} \\
= & \sin \left(45^{\circ}-30^{\circ}\right) \\
= & \sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ} \\
= & \frac{\sqrt{2}}{2} \frac{\sqrt{3}}{2}-\frac{\sqrt{2}}{2} \frac{1}{2} \\
= & \frac{1}{4}(\sqrt{6}-\sqrt{2}) \\
= & \frac{1}{4} \sqrt{2}(\sqrt{3}-1)
\end{aligned}
$$

- $\cos 75^{\circ}=\sin 15^{\circ}$
$=\sqrt{\frac{1-\cos 30^{\circ}}{2}}$
$=\sqrt{\frac{1-\frac{\sqrt{3}}{2}}{2}}$
$=\frac{1}{2} \sqrt{2-\sqrt{3}}$
- note $\sqrt{6}-\sqrt{2}=\sqrt{2}(\sqrt{3}-1)=2 \sqrt{2-\sqrt{3}}$

GG82-33

- consequently

$$
\begin{aligned}
& \sin 75^{\circ}=\cos 15^{\circ} \\
& =\frac{1}{4}(\sqrt{6}+\sqrt{2}) \\
& =\frac{1}{4} \sqrt{2}(\sqrt{3}+1) \\
& \cos 75^{\circ}=\sin 15^{\circ} \\
& =\frac{1}{4}(\sqrt{6}-\sqrt{2}) \\
& =\frac{1}{4} \sqrt{2}(\sqrt{3}-1)
\end{aligned}
$$

- how to compute $\cos 36^{\circ}$ exactly using only trig \& algebra
set $\mathrm{A}=36^{\circ}$
then
$5 \mathrm{~A}=180^{\circ}$
$3 \mathrm{~A}=180^{\circ}-2 \mathrm{~A}$
$\cos 3 \mathrm{~A}=-\cos 2 \mathrm{~A}$
$\cos 3 \mathrm{~A}+\cos 2 \mathrm{~A}=0$
$4 \cos ^{3} A-3 \cos A+2 \cos ^{2} A-1=0$
$4 \cos ^{3} A+2 \cos ^{2} A-3 \cos A-1=0$
set $\mathrm{x}=\cos \mathrm{A}$
then
$4 \mathrm{x}^{3}+2 \mathrm{x}^{2}-3 \mathrm{x}-1=0$
$(\mathrm{x}+1)\left(4 \mathrm{x}^{2}-2 \mathrm{x}-1\right)=0$
$4 x^{2}-2 x-1=0$
$x=\frac{2+\sqrt{20}}{8}=\frac{1+\sqrt{5}}{4}=\frac{\varphi}{2}$
$\therefore \cos 36^{\circ}=\frac{1+\sqrt{5}}{4}=\frac{\varphi}{2}$
GG82-35
- how to compute $\cos 36^{\circ}$ exactly using a little bit of geometry
consider an isosceles triangle
with apex angle $=36^{\circ}$
with each base angle $=72^{\circ}$;
bisect a base angle
\& consider how the bisector divides the opposite side; take the segment with endpoint at the vertex to be x \& the segment with endpoint at the base to be 1 ; by similar triangles
$\frac{x+1}{x}=\frac{x}{1}$ which is the golden ratio proportion \& thus
$\mathrm{x}=\varphi ;$
by the law of sines
$\frac{\sin 36^{\circ}}{1}=\frac{\sin 72^{\circ}}{\varphi}=\frac{2 \sin 36^{\circ} \cos 36^{\circ}}{\varphi} \&$ thus
$\cos 36^{\circ}=\frac{\varphi}{2}=\frac{1+\sqrt{5}}{4}$

GG82-36

- consequently

$$
\begin{aligned}
& \sin 54^{\circ}=\cos 36^{\circ} \\
& =\frac{1}{4}(1+\sqrt{5}) \\
& =\frac{\varphi}{2} \\
& \cos 54^{\circ}=\sin 36^{\circ} \\
& =\frac{1}{4} \sqrt{10-2 \sqrt{5}} \\
& =\frac{1}{2} \sqrt{3-\varphi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { } \begin{array}{l}
\sin 72^{\circ}=\cos 18^{\circ} \\
=\sqrt{\frac{1+\cos 36^{\circ}}{2}} \\
=\sqrt{\frac{1+\frac{1+\sqrt{5}}{4}}{2}} \\
=\frac{1}{4} \sqrt{10+2 \sqrt{5}} \\
=\frac{1}{2} \sqrt{\varphi+2}
\end{array},=\text {. }
\end{aligned}
$$

$$
\text { - } \cos 72^{\circ}=\sin 18^{\circ}
$$

$$
=\sqrt{\frac{1-\cos 36^{\circ}}{2}}
$$

$$
=\sqrt{\frac{1-\frac{1+\sqrt{5}}{4}}{2}}
$$

$$
=\frac{1}{4} \sqrt{6-2 \sqrt{5}}
$$

$$
=\frac{1}{4}(\sqrt{5}-1)
$$

$$
=\frac{1}{2}(\varphi-1)
$$

- consequently

$$
\begin{aligned}
& \sin 72^{\circ}=\cos 18^{\circ} \\
& =\frac{1}{4} \sqrt{10+2 \sqrt{5}} \\
& =\frac{1}{2} \sqrt{\varphi+2} \\
& \cos 72^{\circ}=\sin 18^{\circ} \\
& =\frac{1}{4}(\sqrt{5}-1) \\
& =\frac{1}{2}(\varphi-1)
\end{aligned}
$$

T. Gauss' s regular polygon constructibility theorem let

- $\mathrm{n} \in \mathrm{int} \geq 3$
- $\alpha=\frac{2 \pi^{r}}{n}=\frac{360^{\circ}}{n}$
then
tfsape
- the regular polygon of n sides is

Platonically constructible

- the angle α is

Platonically constructible

- some basic trig fcn of α is quadratically constructible
- all six basic trig fens of α are quadratically constructible
- $\mathrm{n}=$ a product of
a nonnegative integer power of 2 \& distinct Fermat primes

GG82-40

D. Fermat numbers

let

- $\mathrm{n} \in$ nonneg int
then
- the Fermat number of index n
$=$ the nth Fermat number
$={ }_{d n} \quad F_{n} \quad$ wh $F \leftarrow$ Fermat
$={ }_{\mathrm{df}} 2^{2^{\mathrm{n}}}+1$
R. the only known Fermat primes
as of the year 2002 are the first five Fermat numbers
viz
$\mathrm{F}_{0}=2^{1}+1=3$
$\mathrm{F}_{1}=2^{2}+1=5$
$\mathrm{F}_{2}=2^{4}+1=17$
$\mathrm{F}_{3}=2^{8}+1=257$
$\mathrm{F}_{4}=2^{16}+1=65537$

GG82-41
\square a whiff of nested radicals involving cube roots
problem: to evaluate $\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}$
solution: the golden ratio
$\varphi=\frac{1}{2}(1+\sqrt{5})$
has the property that
$\varphi^{2}=\varphi+1 ;$
multiplying and dividing
repeatedly by φ
and simplifying
gives
etc
$\varphi^{5}=5 \varphi+3$
$\varphi^{4}=3 \varphi+2$
$\varphi^{3}=2 \varphi+1$
$\varphi^{2}=\varphi+1$
$\varphi=\varphi$
$\frac{1}{\varphi}=\varphi-1$
$\frac{1}{\varphi^{2}}=2-\varphi$
$\frac{1}{\varphi^{3}}=2 \varphi-3$
$\frac{1}{\varphi^{4}}=5-3 \varphi$
$\frac{1}{\varphi^{5}}=5 \varphi-8$
etc
note that the coefficients of the first degree polynomials in φ are members of the Fibonacci sequence, alternating in sign for the powers of the reciprocal of φ

GG82-43

hence

$2+\sqrt{5}=2 \varphi+1=\varphi^{3}$
$2-\sqrt{5}=3-2 \varphi=-\frac{1}{\varphi^{3}}$
$\sqrt[3]{2+\sqrt{5}}=\varphi$
$\sqrt[3]{2-\sqrt{5}}=-\frac{1}{\varphi}=1-\varphi$
$\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1$

GG82-44
\square multiplicative nested pth powers

- the basic iterated step: replace something by something times a pth power
- start with

$$
\mathrm{a}_{0}=\mathrm{x}_{0}
$$

- replace x_{0} by $x_{0} \times x_{1}{ }^{p}$ to get $\mathrm{a}_{1}=\mathrm{x}_{0} \times \mathrm{x}_{1}{ }^{\mathrm{p}}$
- replace x_{1} by $\mathrm{x}_{1} \times \mathrm{x}_{2}{ }^{\mathrm{p}}$ to get $\mathrm{a}_{2}=\mathrm{x}_{0} \times\left(\mathrm{x}_{1} \times \mathrm{x}_{2}{ }^{\mathrm{p}}\right)^{\mathrm{p}}$
- replace x_{2} by $\mathrm{x}_{2} \times \mathrm{x}_{3}{ }^{\mathrm{p}}$ to get
$a_{3}=x_{0} \times\left(x_{1} \times\left(x_{2} \times x_{3}\right)^{p}\right)^{p}$
etc

GG82-45

- if the process is ended in fnitely many steps, then a finite multiplicative nested pth power is obtained;
if the process continues to an infinite sequence of the $\mathrm{a}^{\prime} \mathrm{s}$,
then an infinite muliplicative nested pth power is obtained
and the limit of the a's if it exists
viz
$\lim _{\mathrm{a}_{\mathrm{k}}}$ (wh $\mathrm{k} \in$ nonneg int var) iie $k \rightarrow \infty$
is denoted
$x_{0} \times\left(x_{1} \times\left(x_{2} \times\left(x_{3} \times \cdots\right)^{p}\right)^{p}\right)^{p}$
\square for infinite multiplicative nested pth powers as above
- if $\mathrm{p}=1$, then the a' s are the partial products of an infinite product

$$
\begin{aligned}
& x_{0} \times x_{1} \times x_{2} \times x_{3} \times \cdots \\
&= x_{0} x_{1} x_{2} x_{3} \cdots \\
&= \prod_{n=0}^{\infty} x_{n} \\
& \text { viz } \\
& a_{0}=x_{0} \\
& a_{1}=x_{0} x_{1} \\
& a_{2}=x_{0} x_{1} x_{2} \\
& a_{3}=x_{0} x_{1} x_{2} x_{3} \\
& \text { etc }
\end{aligned}
$$

\square here are some particular examples of infinite multiplicative nested radicals
for any pos real nr x

- $\mathrm{x}=\sqrt{\mathrm{X} \sqrt{\mathrm{X} \sqrt{\mathrm{X} \sqrt{\mathrm{X} \cdots}}}}$
$\cdot x=\sqrt[3]{x^{2} \sqrt[3]{x^{2 \sqrt[3]{x} \sqrt{2 \sqrt[3]{x^{2} \cdots}}}}}$
etc
\& ing
- $x=\sqrt[n]{x^{n-1} \sqrt[n]{x^{n-1} \sqrt[n]{x^{n-1} \sqrt[n]{x^{n-1} \cdots}}}}$ wh $n \in$ plural int

GG82-48

