Some Quaint \& Curious \& Almost Forgotten Trig Functions

\#80 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2002

GG80-1 (25)
© 2002 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG80-2
\square six related trigonometric functions, antiquated \& quaint \& curious, that are primarily of historical interest, with some still sometimes somewhat useful

- A \in angle
then
- the versed sine of A
$={ }_{a b}$ the versine of A
$={ }_{d n}$ vers A
$=_{\text {rd }}$ ver - sine A
$=$ verse A
$={ }_{\mathrm{df}} 1-\cos \mathrm{A}$
wh
versine \leftarrow versed sine
vers \leftarrow versine
versed $=$ turned
GG80-3
- the coversed sine of A
$=$ the versed cosine of A
$={ }_{a b}$ the coversine of A
$=_{\mathrm{dn}}$ covers A
$=_{\text {rd }}$ koh - ver - sine A
= koh - verse A
$=_{\mathrm{df}} 1-\sin \mathrm{A}$
wh
coversed sine \leftarrow versed sine of complement coversine \leftarrow coversed sine covers \leftarrow coversine
note that
the versed sine of A
$=1-\cos \mathrm{A}$
\&
the versed cosine of A
$=1-\sin \mathrm{A}$
- half of the versed sine of A
$=$ half of the versine of A
${ }_{a b}$ haversine of A
$=_{\mathrm{dn}}$ havers A
= hav A
$=_{\text {rd }}$ hav-er-sine A
= hav-erse A
= have A
$={ }_{\text {df }} \frac{1}{2}$ vers A
$=\frac{1}{2}(1-\cos \mathrm{A})$
wh
haversine \leftarrow half of versine havers \leftarrow haversine
hav \leftarrow haversine

GG80-5

- half of the coversed sine of A
= half of the versed cosine of A
= half of the coversine of A
${ }^{\mathrm{ab}}$ hacoversine of A
$=_{\mathrm{dn}}$ hacovers A
$=_{\text {rd }}$ hack - o - ver - sine A
= hack-o-verse A
$=_{\mathrm{df}} \frac{1}{2}$ covers A
$=\frac{1}{2}(1-\sin \mathrm{A})$
wh
hacoversine \leftarrow half of coversine hacovers \leftarrow hacoversine
- the external secant of A
$={ }_{a b}$ the exsecant of A
$={ }_{d n}$ exsec A
$=_{\text {rd }}$ ecks - see - cant A
= ecks - seck A
$={ }_{\mathrm{df}} \sec \mathrm{A}-1$
wh
exsecant \leftarrow external secant
exsec \leftarrow exsecant

GG80-7

- the external cosecant of A
$={ }_{a b}$ the excosecant of A
$={ }_{\mathrm{dn}}$ excsc A
$={ }_{\text {rd }}$ ecks - koh - see - cant A
$=$ ecks - koh - seck A
$={ }_{\mathrm{df}} \csc \mathrm{A}-1$
wh
excosecant \leftarrow external cosecant
excsc \leftarrow excosecant
\square some identities involving these trig fcns
- $\operatorname{vers} \mathrm{A}=1-\cos \mathrm{A}=2 \sin ^{2} \frac{\mathrm{~A}}{2}$
- covers $\mathrm{A}=1-\sin \mathrm{A}$
- havers $\mathrm{A}=\frac{1}{2}(1-\cos \mathrm{A})=\sin ^{2} \frac{\mathrm{~A}}{2}$
- hacovers $\mathrm{A}=\frac{1}{2}(1-\sin \mathrm{A})$
- $\operatorname{exsec} \mathrm{A}=\sec \mathrm{A}-1$
- $\operatorname{excsc} \mathrm{A}=\csc \mathrm{A}-1$
- vers $\mathrm{A}=2$ havers A
- covers $\mathrm{A}=2$ covers A
- havers $\mathrm{A}=\frac{1}{2}$ vers A
- hacovers $\mathrm{A}=\frac{1}{2}$ covers A
- exsec $\mathrm{A}=\sec \mathrm{A}$ vers A
- $\operatorname{excsc} \mathrm{A}=\csc \mathrm{A}$ covers A

GG80-10

- vers $\hat{A}=$ covers A
- covers $\hat{\mathrm{A}}=$ vers A
- havers $\hat{\mathrm{A}}=$ hacovers A
- hacovers $\hat{\mathrm{A}}=$ havers A
- exsec $\hat{\mathrm{A}}=\operatorname{excsc} \mathrm{A}$
- $\operatorname{excsc} \hat{\mathrm{A}}=\operatorname{exsec} \mathrm{A}$
wh
A
$={ }_{\text {rd }}$ comp A $=\mathrm{A}$ comp
$={ }_{\mathrm{df}}$ the complement of A
comp \leftarrow complement
note the overscript suggests
a right angle opening downward
GG80-11
- vers $\overline{\mathrm{A}}=2-$ vers A
- covers $\overline{\mathrm{A}}=$ covers A
- havers $\overline{\mathrm{A}}=1$ - havers A
- hacovers $\overline{\mathrm{A}}=$ hacovers A
- $\operatorname{exsec} \mathrm{A}=-2-\operatorname{exsec} \mathrm{A}$
- $\operatorname{excsc} \overline{\mathrm{A}}=\operatorname{excosec} \mathrm{A}$
wh
$\overline{\mathrm{A}}$
$={ }_{r d} \sup A=A \sup$
$={ }_{d f}$ the supplement of A
sup \leftarrow supplement
note the overscript suggests
a straight angle

GG80-12

- vers $(-\mathrm{A})=$ vers A
- covers $(-\mathrm{A})=2-$ covers A
- havers $(-\mathrm{A})=$ havers A
- hacovers $(-\mathrm{A})=1-$ hacovers A
- $\operatorname{exsec}(-\mathrm{A})=\operatorname{exsec} \mathrm{A}$
- $\operatorname{excsc}(-\mathrm{A})=-2-\operatorname{excsc} \mathrm{A}$

GG80-13

- vers $\mathrm{A} \geq 0$
- covers $\mathrm{A} \geq 0$
- havers $\mathrm{A} \geq 0$
- hacovers $\mathrm{A} \geq 0$

G80-14
\square the haversine formula for the angles of a plane triangle

- hav $\mathrm{A}=\frac{(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})}{\mathrm{bc}}$ \& cyclically
\square the haversine formula for the angles of a spherical triangle
- hav A
$=\frac{\sin (\mathrm{s}-\mathrm{b}) \sin (\mathrm{s}-\mathrm{c})}{\sin \mathrm{b} \sin \mathrm{c}}$
$=\frac{\text { hav } a-\operatorname{hav}(b-c)}{\sin b \sin c}$
$=\operatorname{hav}[\pi-(B+C)]+\sin B \sin C$ hav a
\& cyclically
GG80-15
\square the haversine formula for the sides of a spherical triangle
- hava $=\operatorname{hav}(b-c)+\sin b \sin c \operatorname{hav} A$
\& cyclically
note: this formula may be used to find the great - circle distance and the bearing between two positions on the Earth's surface once their latitude \& longitude are known
\square in times gone by
viz
in the 18th \& the 19th \& the early part of the 20th centuries
these trig functions
were used rather frequently
in geography \& in marine navigation;
even today you may see
some appearance of some of them
\& not only in matters involving the history of mathematics
\square a study of the following
labeled diagrams
will reveal reasons for the designations of the four trig functions
- the versed sine of A
$=$ vers A
$=1-\cos \mathrm{A}$
- the coversed sine of A
= covers A
$=1-\sin \mathrm{A}$
- the exsecant of A
$=$ exsec A
$=\sec \mathrm{A}-1$
- the excosecant of A
$=\operatorname{excsc} \mathrm{A}$
$=\csc \mathrm{A}-1$
\square etymology
- sinus rectus (Latin, historical term)
= vertical sine
= sine
- sinus versus (Latin, historical term)
= versed sine
= sine turned on its side
= versine
- coversine
$=$ versine of complement
- exsecant
= external part of the secant
- excosecant
$=$ external part of the cosecant

GG80-19

GG80-20

GG80-21

GG80-22

GG80-23

GG80-24
identify the line segments
representing ie whose lengths are
$\sin \mathrm{A}=\cos \hat{\mathrm{A}}$
$\cos \mathrm{A}=\sin \hat{\mathrm{A}}$
$\tan \mathrm{A}=\cot \hat{\mathrm{A}}$
$\cot \mathrm{A}=\tan \hat{\mathrm{A}}$
$\sec \mathrm{A}=\csc \hat{\mathrm{A}}$
$\csc \mathrm{A}=\sec \hat{\mathrm{A}}$
vers $\mathrm{A}=$ covers $\hat{\mathrm{A}}$
covers $\mathrm{A}=\operatorname{vers} \hat{\mathrm{A}}$
$\operatorname{exsec} \mathrm{A}=\operatorname{excsc} \hat{\mathrm{A}}$
$\operatorname{excsc} \mathrm{A}=\operatorname{exsec} \hat{\mathrm{A}}$

GG80-25

