Real Second-degree Binary Polynomial Equations

 \#79 of Gottschalk’s GestaltsA Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2002

GG79-1 (25)
© 2002 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG79-2
\square the general real second-degree polynomial equation in the two real number variables x and y in canonical form
$={ }_{\mathrm{df}}$
$A x^{2}+B x y+C y^{2}+D x+E y+F=0 \quad(*)$
wh
$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F} \in$ real nr
st
$A \neq 0 \vee B \neq 0 \vee C \neq 0$
\square if the real number variables x and y are interpreted as coordinates, abscissa and ordinate, of a point P in the euclidean plane provided with a rectangular coordinate system with x - axis and y -axis, then the graph of (*)
$=$ the set of all points $\mathrm{P}(\mathrm{x}, \mathrm{y})$ satisfying $\left(^{*}\right)$
is a conic section
or two parallel straight lines or the empty set; the graph classification theorem below spells out this fact in detail according to the nature of the coefficients of (*)

GG79-4
\square a conic section
${ }^{\mathrm{df}}$ a plane section
of a two - nappe right circular cone
in euclidean 3-space

GG79-5
\square a conic section
is one of the following curves:

- an ellipse = a proper ellipse which has
two distinct foci \& two distinct directrices
\& unequal positive semiaxes
\& positive eccentricity < 1
\& a center of symmetry
\& two axes of symmetry
and
which is
a convex simple closed curve

GG79-6

- a hyperbola $=$ a proper hyperbola which has
two distinct foci \& two distinct directrices
\& positive semiaxes
\& eccentricity > 1
\& a pair of intersecting straight - line asymptotes
\& a center of symmetry
\& two axes of symmetry
\& two branches
which are convex simple open
unbounded congruent arcs

GG79-7

- a parabola $=$ a proper parabola which has one focus $\&$ one directrix with focus \notin directrix \& positive latus rectum
\& eccentricity $=1$
\& no center of symmetry
\& one axis of symmetry
and
which is
a convex simple open unbounded curve,

GG79-8

- a circle $=$ a proper circle which has
a positive radius
(a circle may be considered to be a degenerate / limiting form of an ellipse
with coincident foci
\& equal semiaxes
$\&$ eccentricity $=0$)
- a point
(a point may be considered to be a degenerate / limting form of an ellipse with zero semiaxes or of a circle with zero radius)

GG79-9

- one straight line
(may be considered to be
a degenerate / limiting form
of a parabola
with zero curvature)
- two intersecting straight lines
(may be considered to be
a degenerate / limiting form
of a hyperbola
which coincides with its asymptotes)
- conversely, any such curve is congruent to a plane section of a right circular cone
\square strictly speaking two parallel straight lines and the empty set are not conic sections; but they are plane sections
of the degenerate / limiting form of a right circular cone when the vertex recedes to infinity viz
a right circular cylinder
- a plane section of a right circular cylinder is one of the following curves: empty set, a single line, two parallel lines, a circle, an ellipse; conversely, any such curve is congruent to a plane section of a right circular cylinder

GG79-11

- a single straight line and
a pair of parallel straight lines may each be considered to be a degenerate / limiting form of an ellipse
when the foci go to infinity in the opposite directions
\square the following functions
d, q, t, s
of the coefficients of $(*)$
are called
invariants of (*)
because their values remain unchanged
when the coordinate axes
are translated and rotated
to obtain a new equation;
when (*) is multiplied by a nonzero real number k , the new equation has the same graph
as the original equation but the original
d is multiplied by k^{3},
q is multiplied by k^{2}, t is multiplied by k , s remains unchanged

GG79-13

- the discriminant of $(*)$
$={ }_{\mathrm{dn}} \mathrm{d}$
$={ }_{\text {df }}\left|\begin{array}{ccc}\mathrm{A} & \frac{B}{2} & \frac{D}{2} \\ \frac{B}{2} & C & \frac{E}{2} \\ \frac{D}{2} & \frac{E}{2} & F\end{array}\right|$

GG79-14

- the quadratic discriminant of (*)
$={ }_{\mathrm{dn}} \mathrm{q}$
$={ }_{d f}\left|\begin{array}{ll}A & \frac{B}{2} \\ \frac{B}{2} & C\end{array}\right|$

GG79-15

- the quadratic trace of $(*)$
$={ }_{d n} t$
$={ }_{d f} \mathrm{~A}+\mathrm{C}$

GG79-16

- the sign invariant of $(*)$
$={ }_{\mathrm{dn}} \mathrm{S}$
$==_{d f} \operatorname{sgn}\left(\left|\begin{array}{ll}A & \frac{D}{2} \\ \frac{D}{2} & F\end{array}\right|+\left|\begin{array}{cc}C & \frac{E}{2} \\ \frac{E}{2} & F\end{array}\right|\right)$

GG79-17

- note that
the three second - order determinants appearing in the definitions of $q \& s$ are the minors of the diagonal entries of the third - order determinant appearing in the definition of d
$\cdot \mathrm{t}^{2}=4 \mathrm{q} \Leftrightarrow \mathrm{A}=\mathrm{C} \& B=0$

GG79-18
\square The Graph Classification Theorem for Real Second- degree Polynomial Equations in Two Variables
the graphs of the equations in the form (*) are described
in the following six exclusive \& exhaustive cases:

GG79-19
Δ case I. $\mathrm{d} \neq 0 \& \mathrm{q}>0$

- subcase I_{1}. sgnd $\neq \operatorname{sgnt} \& 4 \mathrm{q} \neq \mathrm{t}^{2}$ \Rightarrow
graph $=$ an ellipse
- subcase $I_{2} \cdot \operatorname{sgnd} \neq \operatorname{sgnt} \& 4 q=t^{2}$ \Rightarrow
graph $=$ a circle
- subcase I_{3}. $\operatorname{sgn} \mathrm{d}=\operatorname{sgnt}$
\Rightarrow
graph $=\varnothing$

GG79-20
Δ case II. $\mathrm{d} \neq 0 \& \mathrm{q}<0$

$$
\Rightarrow
$$

graph $=$ a hyperbola
Δ case III. $\mathrm{d} \neq 0 \& \mathrm{q}=0$

$$
\Rightarrow
$$

graph $=$ a parabola

GG79-22
Δ case IV. $\mathrm{d}=0 \& \mathrm{q}>0$
\Rightarrow
graph $=$ one point

GG79-23

$$
\begin{aligned}
& \Delta \text { case V. } \mathrm{d}=0 \& \mathrm{q}<0 \\
& \Rightarrow \\
& \text { graph }=\text { the union of } \\
& \quad \text { two distinct intersecting straight lines }
\end{aligned}
$$

GG79-24

$$
\Delta \text { case VI. } \mathrm{d}=0 \& \mathrm{q}=0
$$

- subcase VI_{1}. s >0
\Rightarrow
graph $=\varnothing$
- subcase $\mathrm{VI}_{2} . \mathrm{s}<0$
\Rightarrow
graph $=$ the union of two distinct parallel straight lines
- subcase $\mathrm{VI}_{3} . \mathrm{s}=0$ \Rightarrow
graph $=$ one straight line

GG79-25

