Basic Notation \& Terminology for Fields \#76 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2002

GG76-1 (17)
© 2002 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG76-2
\square the basic notation \& terminology
for a general abstract field
is taken over from that of
the three special concrete fields:
the field of rational numbers,
the field of real numbers,
the field of complex numbers;
ito operations
\& not using any existential quantifiers,
a field consists of an underlying set provided with

- two nullary operations
- two unary operations
- four binary operations satisfying certain conditions = axioms; allowing existential quantifiers in the definition it is possible to define a field as a set provided with two binary operations
viz addition \& multiplication
of a certain kind
\square the two basic nullary field operations of a field F
Δ the additive identity element of F
${ }_{\mathrm{dn}} 0$
$=_{\mathrm{rd}}$ zero $=$ oh
\& \therefore the corresponding nullary operation in F is
$\{\varnothing\} \rightarrow F$
$\varnothing \mapsto 0$
Δ the multiplicative identity element of F
$=_{\mathrm{dn}} 1$
$=_{r d}$ one $=$ unity
\& \therefore the corresponding nullary operation in F is
$\{\varnothing\} \rightarrow F$
$\varnothing \mapsto 1$

GG76-4
\square the two basic unary field operations of a field F
Δ negation in F
$=$ the unary operation in F
$-: \mathrm{F} \rightarrow \mathrm{F}$
$\mathrm{a} \mapsto-\mathrm{a}$
wh

- $-=_{r d}$ minus
- - a
$={ }_{r d}$ minus a
${ }_{\mathrm{cl}}$ the negation of a
- $\mathrm{a}=_{\mathrm{cl}}$ the negatee of -a
Δ reciprocation in F
$=$ the partial unary operation in F
${ }^{*}: \mathrm{F}_{*} \rightarrow \mathrm{~F}_{*}$
$a \mapsto a^{*}$
wh
- * $=_{\text {rd }}$ recip
- a*
$={ }_{\text {rd }}$ recip a
$={ }_{\mathrm{cl}}$ the reciprocal of a
- $\mathrm{a}={ }_{\mathrm{cl}}$ the base of a^{*}
note: $\mathrm{a}^{*}=\mathrm{a}^{-1}=\frac{1}{\mathrm{a}}$
it appears there is no recognized symbol
for the reciprocal of nonzero numbers in recent history, probably because there was no special need for it; the ancient Egyptians used unit fractions for fractions and employed first an elongated oval
(hieroglyph for the open mouth)
and later a dot over a numeral to denote the reciprocal

GG76-6
\square the four basic binary field operations of a field F
Δ addition in F
$=$ the binary operation in F
$+: \mathrm{F} \times \mathrm{F} \rightarrow \mathrm{F}$
$(a, b) \mapsto a+b$
wh

- + $=_{\mathrm{rd}}$ plus
- $\mathrm{a}+\mathrm{b}$
$=_{\mathrm{rd}}$ a plus b
${ }^{{ }_{c l}}$ the sum of a and b
- $\mathrm{a}={ }_{\mathrm{cl}}$ the first term/addend / summand of $\mathrm{a}+\mathrm{b}$
- $\mathrm{b}=_{\mathrm{cl}}$ the second term/addend/summand of $\mathrm{a}+\mathrm{b}$

GG76-7
Δ subtraction in F
$=$ the binary operation in F
$-: \mathrm{F} \times \mathrm{F} \rightarrow \mathrm{F}$
$(\mathrm{a}, \mathrm{b}) \mapsto \mathrm{a}-\mathrm{b}$
wh

- $-=_{r d}$ minus
- $\mathrm{a}-\mathrm{b}$
$={ }_{\mathrm{rd}}$ a minus b
$={ }_{c l}$ the difference of a from b
- $\mathrm{a}={ }_{\mathrm{cl}}$ the first term of $\mathrm{a}-\mathrm{b}$
$=$ the minuend of $\mathrm{a}-\mathrm{b}$
- $\mathrm{b}={ }_{\mathrm{cl}}$ the second term of $\mathrm{a}-\mathrm{b}$
$=$ the subtrahend of $\mathrm{a}-\mathrm{b}$

Δ multiplication in F

$=$ the binary operation in F
$\times=\cdot: \mathrm{F} \times \mathrm{F} \rightarrow \mathrm{F}$
$(\mathrm{a}, \mathrm{b}) \mapsto \mathrm{a} \times \mathrm{b}=\mathrm{a} \cdot \mathrm{b}=\mathrm{ab}$
wh

- $\times==_{\text {rd }}$ times
- $a \times b=a \cdot b=a b$
$={ }_{r d}$ a times b
$={ }_{c l}$ the product of a and b
- $\mathrm{a}={ }_{\mathrm{cl}}$ the first term / factor / multiplier of $a \times b=a \cdot b=a b$
- $\mathrm{b}={ }_{\mathrm{cl}}$ the sec ond term / factor / multiplier of $a \times b=a \cdot b=a b$
Δ division in F
$=$ the partial binary operation in F
$\div=-=/: \mathrm{F} \times \mathrm{F}_{*} \rightarrow \mathrm{~F}$
(a,b) $\mapsto \mathrm{a} \div \mathrm{b}=\frac{\mathrm{a}}{\mathrm{b}}=\mathrm{a} / \mathrm{b}$
wh
- $\div=_{\text {rd }}$ divided by
- - $=_{\text {rd }}$ divided by $=$ over
- / $=_{\text {rd }}$ divided by $=$ by
- $a \div b$
$={ }_{\mathrm{rd}}$ a divided by b
$={ }_{c l}$ the quotient of $a b y b$
- a
b
$={ }_{r d}$ a divided by $\mathrm{b}=\mathrm{a}$ over b
$=$ the fraction of a over b
with numerator a and denominator b
$={ }_{c l}$ the quotient of $a b y b$
- a / b
$={ }_{r d}$ a divided by $b=a \operatorname{by} b$
$=$ the fraction of a over b with numerator a and denominator b
$={ }_{c l}$ the quotient of $a b y b$
- $\mathrm{a}={ }_{\mathrm{cl}}$ the first term / dividend of $\mathrm{a} \div \mathrm{b}=\frac{\mathrm{a}}{\mathrm{b}}=\mathrm{a} / \mathrm{b}$
$\bullet \mathrm{b}={ }_{\mathrm{cl}}$ the second term / divisor of $\mathrm{a} \div \mathrm{b}=\frac{\mathrm{a}}{\mathrm{b}}=\mathrm{a} / \mathrm{b}$

GG76-11
\square the two basic numerical field operations of a field F
Δ multiple - formation for F
$=$ the function
$\mathrm{Z} \times \mathrm{F} \rightarrow \mathrm{F}$
$(\mathrm{n}, \mathrm{a}) \mapsto \mathrm{na}$
wh

- na
$=_{\text {rd }} \mathrm{n}$ times a
$=_{\mathrm{cl}}$ the product of n and a
$=$ the nth multiple of a
- $\mathrm{n}=_{\mathrm{cl}}$ the first term of na
$=$ the numerical factor of na
$=$ the multiplier of na
- $\mathrm{a}=_{\mathrm{cl}}$ the second term of na
$=$ the field factor of na
$=$ the multiplicand of na

GG76-12
Δ power - formation for F
$=$ exponentiation for F
$=$ the function
$\mathrm{F} \times \mathbb{N} \cup \mathrm{F}_{*} \times \mathbb{P} \rightarrow \mathrm{F}$
$(a, n) \mapsto a^{n}$
wh

- a^{n}
$={ }_{\mathrm{rd}}$ a to the nth
$={ }_{\mathrm{cl}}$ the power with base a and exponent n
$=$ the nth power of a
- $\mathrm{a}={ }_{\mathrm{cl}}$ the base of a^{n}
- $\mathrm{n}={ }_{\mathrm{cl}}$ the exponent of a^{n}
note:
$\mathrm{a}^{2}==_{\mathrm{rd}}$ a square $(\mathrm{d})==_{\mathrm{cl}}$ the square of a
$\mathrm{a}^{3}=_{\mathrm{rd}}$ a cube $(\mathrm{d})==_{\mathrm{cl}}$ the cube of a

GG76-13
\square word forms in the pattern

- noun
adjective
verb
- addition
additive add
- subtraction
subtractive
subtract
- multiplication multiplicative multiply
- division divisive divide

GG76-14
\square syntactic names of some symbols used for fields

- the addition sign $+=$ Greek cross
- the subtraction sign $-=$ horizontal bar
- the multiplication sign \times Saint Andrew's cross
- the multiplication sign $\cdot=$ mid dot
- the product $a b$ of a and $b=$ juxtaposition of a and b
- the division sign $\div=$ obelus
(a combination of the horizonal bar and the colon)
- the division sign $-=$ the fraction sign -
$=$ horizontal bar
- the division sign $/=$ the fraction sign $/=$ bend bias
crossline
diagonal
oblique
scratch comma
separatrix
shilling
slant
slash
solidus
stroke
transverse
virgule
\square the structure square
of the four field basic binary operations

GG76-17

