Basic Notation & Terminology for Fields #76 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2002

GG76-1 (17)

© 2002 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

 \Box the basic notation & terminology for a general abstract field is taken over from that of the three special concrete fields: the field of rational numbers, the field of real numbers, the field of complex numbers; ito operations & not using any existential quantifiers, a field consists of an underlying set provided with • two nullary operations • two unary operations • four binary operations satisfying certain conditions = axioms; allowing existential quantifiers in the definition it is possible to define a field as a set provided with two binary operations viz addition & multiplication of a certain kind

□ the two basic nullary field operations of a field F

 $\Delta \text{ the additive identity element of F} =_{dn} 0$ $=_{rd} \text{ zero } = \text{ oh}$ $\& \therefore \text{ the corresponding nullary operation in F is} \{\emptyset\} \rightarrow F$ $\emptyset \mapsto 0$

 $\Delta \text{ the multiplicative identity element of F} =_{dn} 1$ $=_{rd} \text{ one } = \text{ unity}$ $\& \therefore \text{ the corresponding nullary operation in F is}$ $\{\emptyset\} \rightarrow F$ $\emptyset \mapsto 1$

□ the two basic unary field operations of a field F

 $\Delta \text{ negation in F}$ = the unary operation in F $-:F \rightarrow F$ $a \mapsto -a$ wh $\bullet - =_{rd} \text{ minus}$ $\bullet -a$ $=_{rd} \text{ minus a}$ $=_{cl} \text{ the negation of a}$ $\bullet a =_{cl} \text{ the negatee of } -a$

 Δ reciprocation in F

= the partial unary operation in F

: $F_ \rightarrow F_*$ $a \mapsto a^*$ wh • $* =_{rd} recip$ • a^* $=_{rd} recip a$ $=_{cl}$ the reciprocal of a • $a =_{cl}$ the base of a^* note: $a^* = a^{-1} = \frac{1}{a}$

it appears there is no recognized symbol

for the reciprocal of nonzero numbers in recent history, probably because there was no special need for it; the ancient Egyptians used unit fractions for fractions and employed first an elongated oval (hieroglyph for the open mouth) and later a dot over a numeral to denote the reciprocal

□ the four basic binary field operations of a field F

 $\Delta \text{ addition in F}$ = the binary operation in F
+: F × F → F
(a,b) \mapsto a + b
wh
• + =_{rd} plus
• a + b
=_{rd} a plus b
=_{cl} the sum of a and b

- $a =_{cl}$ the first term / addend / summand of a + b
- $b =_{cl}$ the second term / addend / summand of a + b

 Δ subtraction in F

- = the binary operation in F
- $-: \mathbf{F} \times \mathbf{F} \rightarrow \mathbf{F}$

$$(a,b) \mapsto a-b$$

wh

- $=_{rd}$ minus
- a b
- =_{rd} a minus b
- $=_{cl}$ the difference of a from b
- a =_{cl} the first term of a b
 = the minuend of a b
- $b =_{cl}$ the second term of a b
 - = the subtrahend of a b

 $\Delta \text{ multiplication in F}$ = the binary operation in F $\times = \cdot : F \times F \rightarrow F$ $(a,b) \mapsto a \times b = a \cdot b = ab$ wh $\bullet \times = \cdot =_{rd} \text{ times}$ $\bullet a \times b = a \cdot b = ab$

 $=_{rd}$ a times b

- $=_{cl}$ the product of a and b
- $a =_{cl}$ the first term / factor / multiplier of $a \times b = a \cdot b = ab$
- $b =_{cl}$ the sec ond term / factor / multiplier of $a \times b = a \cdot b = ab$

 $\Delta \text{ division in F}$ = the partial binary operation in F $\div = - = /: F \times F_* \to F$ $(a,b) \mapsto a \div b = \frac{a}{b} = a / b$

wh

•
$$\div$$
 =_{rd} divided by

- $=_{rd}$ divided by = over
- / $=_{rd}$ divided by = by

• a ÷ b $=_{rd}$ a divided by b $=_{cl}$ the quotient of a by b • $\frac{a}{b}$ $=_{rd}$ a divided by b = a over b = the fraction of a over b with numerator a and denominator b $=_{cl}$ the quotient of a by b • a / b $=_{rd}$ a divided by b = a by b = the fraction of a over b with numerator a and denominator b $=_{cl}$ the quotient of a by b

• a =_{cl} the first term / dividend of a ÷ b = $\frac{a}{b}$ = a / b

• b =_{cl} the second term / divisor of $a \div b = \frac{a}{b} = a / b$

□ the two basic numerical field operations of a field F

 $\Delta \text{ multiple - formation for F}$ = the function $\mathbb{Z} \times F \rightarrow F$ (n, a) \mapsto na
wh
• na
=_{rd} n times a
=_{cl} the product of n and a
= the nth multiple of a
• n =_{cl} the first term of na
= the numerical factor of na
= the multiplier of na

- $a =_{cl}$ the second term of na
 - = the field factor of na
 - = the multiplicand of na

 Δ power - formation for F

- = exponentiation for F
- = the function
- $F \times \mathbb{N} \cup F_* \times \overline{\mathbb{P}} \to F$

$$(a, n) \mapsto a^n$$

wh

- aⁿ
- $=_{rd}$ a to the nth
- $=_{cl}$ the power with base a and exponent n
- = the nth power of a
- $a =_{cl}$ the base of a^n
- $n =_{cl}$ the exponent of a^n

note:

$$a^{2} =_{rd} a \text{ square}(d) =_{cl} the square of a$$

 $a^{3} =_{rd} a \text{ cube}(d) =_{cl} the cube of a$

 \Box word forms in the pattern

• noun

adjective

verb

addition
 additive
 add

subtraction
 subtractive
 subtract

 multiplication multiplicative multiply

division
 divisive
 divide

 \Box syntactic names of some symbols used for fields

- the addition sign + = Greek cross
- the subtraction sign = horizontal bar
- the multiplication sign \times = Saint Andrew's cross
- the multiplication sign $\cdot = \text{mid dot}$
- the product ab of a and b = juxtaposition of a and b
- the division sign ÷ = obelus
 (a combination of the horizonal bar and the colon)
- the division sign = the fraction sign -
 - = horizontal bar

the division sign / = the fraction sign / =
bend
bias
crossline
diagonal
oblique
scratch comma
separatrix
shilling
slant
slash
solidus
stroke

transverse

virgule

□ the structure square of the four field basic binary operations

