Identities in Commutative Rings
\#75 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG75-1 (32)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG75-2
identities in commutative rings
\square this is a short semi- systematic listing of various necessarily algebraic identities in commutative rings
\square standing notation

- $\mathrm{R} \in$ com ring wh $\mathrm{R} \leftarrow$ ring
- a, b, c, d, p, q, r, s, x, y, z (perhaps adfixed)
$\in \operatorname{var} \mathrm{R}$
- $\mathrm{n} \in$ pos int
\square here an identity is understood to be an equality of two ring expressions that is true for all values of the variables
\square identities may be roughly classified as
- factorization:
to convert an algebraic sum into a product;
- expansion:
to convert a product into an algebraic sum;
- change - of - form
\square factoring $=$ factorizing
\&
expanding
are opposite / inverse procedures;
given an equation that is read from left to right for one procedure,
then reading the equation from right to left
is the other procedure;
the results are called
factorizations
\&
expansions
\square the simplest example of
factoring / factorization \& expanding / expansion
is to be found in the distributive axiom/law of rings
$a(b+c)=a b+a c$
which connects
the additive \& multiplicative structures of a ring; factoring / factorization: from RHS to LHS; expanding / expansion: from LHS to RHS

GG75-4
\square factoring a difference of like odd powers

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{5}-b^{5}=(a-b)\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right) \\
& a^{7}-b^{7}=(a-b)\left(a^{6}+a^{5} b+a^{4} b^{2}+a^{3} b^{3}+a^{2} b^{4}+a b^{5}+b^{6}\right)
\end{aligned}
$$

etc

$$
a^{2 n+1}-b^{2 n+1}=(a-b) \sum_{i=0}^{2 n} a^{2 n-i} b^{i}
$$

\square factoring a sum of two like odd powers

$$
\begin{aligned}
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{5}+b^{5}=(a+b)\left(a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4}\right) \\
& a^{7}+b^{7}=(a+b)\left(a^{6}-a^{5} b+a^{4} b^{2}-a^{3} b^{3}+a^{2} b^{4}-a b^{5}+b^{6}\right)
\end{aligned}
$$

etc
$a^{2 n+1}+b^{2 n+1}=(a+b) \sum_{i=0}^{2 n}(-1)^{i} a^{2 n-i} b^{i}$
\square factoring a difference of like even powers

$$
\begin{aligned}
& a^{2}-b^{2}=(a+b)(a-b) \\
& a^{4}-b^{4}=(a+b)(a-b)\left(a^{2}+b^{2}\right) \\
& a^{6}-b^{6}=(a+b)(a-b)\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right) \\
& a^{8}-b^{8}=(a+b)(a-b)\left(a^{2}+b^{2}\right)\left(a^{4}+b^{4}\right) \\
& a^{10}-b^{10}=(a+b)(a-b) \\
& \times\left(a^{4}+a^{3} b+a^{2} b^{2}+a b^{3}+b^{4}\right)\left(a^{4}-a^{3} b+a^{2} b^{2}-a b^{3}+b^{4}\right)
\end{aligned}
$$

etc
the pattern is determined by the exponent expressed as a power of 2 times an odd integer

GG75-7
\square factoring a sum of two squares with a special element

$$
\begin{aligned}
& i \in R \& i^{2}=-1 \\
& \Rightarrow \\
& a^{2}+b^{2}=(a+i b)(a-i b)
\end{aligned}
$$

\square factoring a sum of two fourth powers with special elements

- $i \in R \quad \& i^{2}=-1$
\Rightarrow
$a^{4}+b^{4}=\left(a^{2}+i b^{2}\right)\left(a^{2}-i b^{2}\right)$
$\cdot i, j \in R \quad \& i^{2}=-1 \quad \& j^{2}=-i$
\Rightarrow
$a^{4}+b^{4}=(a+j b)(a-j b)\left(a^{2}-i b^{2}\right)$
$\cdot i, k \in R \quad \& i^{2}=-1 \& k^{2}=i$
\Rightarrow
$a^{4}+b^{4}=\left(a^{2}+i b^{2}\right)(a+k b)(a-k b)$
$\cdot i, j, k \in R \quad \& i^{2}=-1 \quad \& j^{2}=-i \quad \& k^{2}=i$
\Rightarrow
$a^{4}+b^{4}=(a+j b)(a-j b)(a+k b)(a-k b)$
GG75-9
\square semisum factorizations
- for a semisum of two elements
$2 \mathrm{~s}=\mathrm{a}+\mathrm{b}$
\Rightarrow
$4 a^{2} b^{2}-\left(a^{2}+b^{2}\right)^{2}$
$=16 \mathrm{~s}^{2}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})$
- for a semisum of three elements
$2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
\Rightarrow
$4 a^{2} b^{2}-\left(a^{2}+b^{2}-c^{2}\right)^{2}$
$=16 \mathrm{~s}(\mathrm{~s}-\mathrm{a})(\mathrm{s}-\mathrm{b})(\mathrm{s}-\mathrm{c})$
- for a semisum of four elements
$2 \mathrm{~s}=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}$
\Rightarrow
$4(a b+c d)^{2}-\left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}$
$=16(s-a)(s-b)(s-c)(s-d)$

\square some special factorings

$$
\begin{aligned}
& a^{4}+a^{2} b^{2}+b^{4} \\
& =\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right) \\
& a^{8}+a^{4} b^{4}+b^{8} \\
& =\left(a^{4}+a^{2} b^{2}+b^{4}\right)\left(a^{4}-a^{2} b^{2}+b^{4}\right) \\
& =\left(a^{2}+a b+b^{2}\right)\left(a^{2}-a b+b^{2}\right)\left(a^{4}-a^{2} b^{2}+b^{4}\right) \\
& a^{12}+a^{6} b^{6}+b^{12} \\
& =\left(a^{6}+a^{3} b^{3}+b^{6}\right)\left(a^{6}-a^{3} b^{3}+b^{6}\right)
\end{aligned}
$$

etc

$$
\begin{aligned}
& a^{4 n}+a^{2 n} b^{2 n}+b^{4 n} \\
& =\left(a^{2 n}+a^{n} b^{n}+b^{2 n}\right)\left(a^{2 n}-a^{n} b^{n}+b^{2 n}\right)
\end{aligned}
$$

\square binomial expansion / formula / theorem

$$
(a+b)^{2}=a^{2}+a b+b^{2}
$$

$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$
etc

$$
(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{n-i} b^{i}
$$

GG75-12

\square squares of multinomials

$(a+b)^{2}$
$=a^{2}+b^{2}+2 a b$
$(a+b+c)^{2}$
$=a^{2}+b^{2}+c^{2}+2(a b+a c+b c)$
$(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})^{2}$
$=a^{2}+b^{2}+c^{2}+d^{2}+2(a b+a c+a d+b c+b d+c d)$
etc

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\sum_{i=1}^{n} a_{i}{ }^{2}+2 \sum_{1 \leq i<j \leq n}^{n} a_{i} a_{j}
$$

there is a multinomial expansion / formula / theorem generalizing the binomial expansion / formula / theorem but it is rather complicated to write down

GG75-13

\square some special expansions

$$
\begin{aligned}
& (a+b)^{2}+(b+c)^{2}+(c+a)^{2} \\
& =2\left(a^{2}+b^{2}+c^{2}+a b+b c+c a\right)
\end{aligned}
$$

$$
(a-b)^{2}+(b-c)^{2}+(c-a)^{2}
$$

$$
=2\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)
$$

GG75-14
\square identities involving squares of algebraic sums of squares

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right)^{2}=\left(a^{2}-b^{2}\right)^{2}+(2 a b)^{2} \\
& \left(a^{2}+b^{2}+c^{2}+d^{2}\right)^{2} \\
& = \\
& \left(a^{2}+b^{2}-c^{2}-d^{2}\right)^{2}+(2 a c+2 b d)^{2}+(2 a d-2 b c)^{2}
\end{aligned}
$$

\square the quadratic formula in disguise

$$
\begin{aligned}
& p^{2}=b^{2}-4 a c \\
& \Rightarrow \\
& 4 a\left(a x^{2}+b x+c\right) \\
& =(2 a x+b+p)(2 a x+b-p)
\end{aligned}
$$

\square the Fibonacci two - square identity: the product of two sums of two squares is a sum of two squares

$$
\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)=(\mathrm{ac}-\mathrm{bd})^{2}+(\mathrm{ad}+\mathrm{bc})^{2}
$$

this identity in the real field is a virtual restatement of the fact that the absolute value of the product of two complex numbers equals the product of the absolute values of the complex numbers

GG75-17
\square the Euler four - square identity: the product of two sums of four squares is a sum of four squares

$$
\begin{aligned}
& \left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}+b_{4}^{2}\right) \\
& = \\
& \left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right)^{2} \\
& + \\
& \left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right)^{2} \\
& + \\
& \left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right)^{2} \\
& + \\
& \left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right)^{2}
\end{aligned}
$$

this identity in the real field is a virtual restatement of the fact that the norm of the product of two quaternions equals the product of the norms of the quaternions

GG75-18
\square the Degen eight - square identity: the product of two sums of eight squares is a sum of eight squares
in compresssed notation:
for four quaternions $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$
$\left(|\mathbf{a}|^{2}+|\mathbf{b}|^{2}\right)\left(|\mathbf{c}|^{2}+|\mathbf{d}|^{2}\right)=\left|\mathbf{a c}-\mathbf{d} \overline{\mathbf{b}}^{2}+|\overline{\mathbf{a}} \mathbf{d}+\mathbf{c b}|^{2}\right.$
this identity in the real field
is a virtual restatement of the fact that
the norm of the product of two octonions
equals
the product of the norms of the octonions
note: the product of the two octonions in the compressed notation is
$(\mathbf{a}, \mathbf{b})(\mathbf{c}, \mathbf{d})=(\mathbf{a c}-\mathbf{d} \overline{\mathbf{b}}, \overline{\mathbf{a}} \mathbf{d}+\mathbf{c b})$
wh an octonion is considered to be an ordered pair of quaternions

GG75-19

\square the Ferrari identity

$$
\begin{aligned}
& \left(a^{2}-b^{2}-2 b c+2 c a\right)^{4} \\
& + \\
& \left(b^{2}-c^{2}-2 c a-2 a b\right)^{4} \\
& + \\
& \left(c^{2}-a^{2}+2 a b+2 b c\right)^{4} \\
& = \\
& 2\left(a^{2}+b^{2}+c^{2}-a b+b c+c a\right)^{4}
\end{aligned}
$$

\square an Euler identity

$$
\begin{aligned}
& \left(\mathrm{abp}^{2}+\mathrm{cdq}^{2}\right)\left(\mathrm{acr}^{2}+\mathrm{bds}^{2}\right) \\
& =
\end{aligned}
$$

$\operatorname{ad}(\mathrm{bps} \pm \mathrm{cqr})^{2}+\mathrm{bc}(\mathrm{apr} \mp \mathrm{dqs})^{2}$

this identity generalizes the Fibonacci identity

\square the trinomial identity
$\mathrm{x}=\mathrm{pr}-\mathrm{bqs}$
\&
$\mathrm{y}=\mathrm{qr}+\mathrm{ps}+\mathrm{aqs}$
\Rightarrow
$\left(p^{2}+a p q+b q^{2}\right)\left(r^{2}+a r s+b s^{2}\right)=x^{2}+a x y+b y^{2}$

\square identity involving cubes of binomials

$$
a(a+2 b)^{3}=a(a-b)^{3}+b(a-b)^{3}+b(2 a+b)^{3}
$$

\square the Liouville polynomial identity

$$
\begin{aligned}
& 6\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)^{2} \\
& = \\
& +\left(x_{1}+x_{2}\right)^{4}+\left(x_{1}+x_{3}\right)^{4}+\left(x_{1}+x_{4}\right)^{4} \\
& +\left(x_{2}+x_{3}\right)^{4}+\left(x_{2}+x_{4}\right)^{4}+\left(x_{3}+x_{4}\right)^{4} \\
& +\left(x_{1}-x_{2}\right)^{4}+\left(x_{1}-x_{3}\right)^{4}+\left(x_{1}-x_{4}\right)^{4} \\
& +\left(x_{2}-x_{3}\right)^{4}+\left(x_{2}-x_{4}\right)^{4}+\left(x_{3}-x_{4}\right)^{4}
\end{aligned}
$$

\square two Ramanujan identities

$$
\begin{aligned}
& \left(a^{2}+7 a b-9 b^{2}\right)^{3}+\left(2 a^{2}-4 a b+12 b^{2}\right)^{3} \\
& = \\
& \left(2 a^{2}+10 b^{2}\right)^{3}+\left(a^{2}-9 a b-b^{2}\right)^{3} \\
& \left(4 a^{5}-5 a\right)^{4}+\left(6 a^{4}-3\right)^{4}+\left(4 a^{4}+1\right)^{4} \\
& = \\
& \left(4 a^{5}+a\right)^{4}+\left(2 a^{4}-1\right)^{4}+3^{4}
\end{aligned}
$$

\square the Lagrange identity

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} a_{i}^{2}\right)\left(\sum_{i=1}^{n} b_{i}^{2}\right)-\left(\sum_{i=1}^{n} a_{i} b_{i}\right)^{2} \\
& = \\
& \sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}
\end{aligned}
$$

\square the Binet - Cauchy identity

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} a_{i} c_{i}\right)\left(\sum_{i=1}^{n} b_{i} d_{i}\right)-\left(\sum_{i=1}^{n} a_{i} d_{i}\right)\left(\sum_{i=1}^{n} b_{i} c_{i}\right) \\
& = \\
& \sum_{1 \leq i<j \leq n}\left(a_{i} b_{j}-a_{j} b_{i}\right)\left(c_{i} d_{j}-c_{j} d_{i}\right)
\end{aligned}
$$

this identity generalizes the Lagrange identity

GG75-27
\square the notion of nth order determinant
\& some of the standard properties
of nth order determinants
carry over to com rings
eg
for and order determinants
$\left|\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right|={ }_{\mathrm{df}} \mathrm{ad}-\mathrm{bc}$
\&
$\left|\begin{array}{ccc}a & b \\ c & d\end{array}\right| \begin{array}{ll}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\left|=\left|\begin{array}{ll}a a^{\prime}+b c^{\prime} & a b^{\prime}+b d^{\prime} \\ c a^{\prime}+d c^{\prime} & c b^{\prime}+d d^{\prime}\end{array}\right|\right.$

GG75-28
\square the notion of n - vector over R is definable as
an ordered n - tuple of elements of R ;
vectors may be added or subtracted or multiplied by ring elements
on the left or on the right
componentwise;
the dot product is defined as usual and the cross product of two 3-vectors is defined as usual; many of the algebraic vector identities
for the reals say
now also ensue for R;
eg Lagrange's identity for four 3-vectors
$(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=\left|\begin{array}{ll}\mathbf{a} \cdot \mathbf{c} & \mathbf{a} \cdot \mathbf{d} \\ \mathbf{b} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{d}\end{array}\right|$
expressed suggestively as
dot of crosses
equals
determinant of dots
GG75-29
\square the elementary symmetric functions / polynomials
= the sigmas

- for 2 variables r_{1}, r_{2}
$\left(x-r_{1}\right)\left(x-r_{2}\right)$
$=x^{2}-\left(r_{1}+r_{2}\right) x+r_{1} r_{2}$
$=\mathrm{x}^{2}-\sigma_{1} \mathrm{x}+\sigma_{2}$
wh
$\sigma_{1}=r_{1}+r_{2}$
$\sigma_{2}=r_{1} r_{2}$
- for 3 variables $\mathrm{r}_{1}, \mathrm{r}_{2}, \mathrm{r}_{3}$
$\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)$
$=x^{3}-\left(r_{1}+r_{2}+r_{3}\right) x^{2}+\left(r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}\right) x-r_{1} r_{2} r_{3}$
$=\mathrm{x}^{3}-\sigma_{1} \mathrm{x}^{2}+\sigma_{2} \mathrm{x}-\sigma_{3}$
wh
$\sigma_{1}=r_{1}+r_{2}+r_{3}$
$\sigma_{2}=r_{1} r_{2}+r_{2} r_{3}+r_{3} r_{1}$
$\sigma_{3}=r_{1} r_{2} r_{3}$
etc
- the fundamental theorem
on symmetric functions / polynomials
states that
any symmetric polynomial in the r's equals
a polynomial in the σ 's
eg
$r_{1}^{2}+r_{2}^{2}=\sigma_{1}^{2}-2 \sigma_{2}$ for two variables
$r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=\sigma_{1}^{2}-2 \sigma_{2}$ for three variables
\& likewise for any number of variables;
Newton's identities concern the σ 's

GG75-31

\square for a com unital ring R

$a^{2}+b^{2}=1$
\Rightarrow
$\left(a^{6}+1\right)\left(b^{2}+1\right)=\left(a^{2}+1\right)\left(b^{6}+1\right)$
this implication could be called a conditional identity
this conditional identity
gives the trig identity
$\frac{\sin ^{6} \mathrm{~A}+1}{\sin ^{2} \mathrm{~A}+1}=\frac{\cos ^{6} \mathrm{~A}+1}{\cos ^{2} \mathrm{~A}+1}$

GG75-32

