The Perfect Definition of a Topology of a Set

#70 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2002

GG70-1 (14)

© 2002 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

D. topology of a set

• five pairwise equivalent definitions of a topology of a set are given below; each type of topology canonically induces each of the other four types of topology; each closed chain of canonical inducements leads back to the original topology

an open-set topology &
a closed-set topology are complement-dual notions & thus equivalent

an interior topology &
a closure topology are complement-dual notions & thus equivalent

• the complement-dual of a neighborhood topology is seemingly unuseful because the complement-dual of a point or rather a singleton set is not a notion that in the past has appeared to be helpful

• the shortest (?) definition: a topology of a set is defined to be a cluster on the set that is closed under finite intersection & arbitrary union

• a topological space is defined to be a set provided with a topology of the set

• the elements of a topological space are called points of the space

• it is to be suggested in a philosophical vein that a geometry is anything that has a topological space associated with it so that space means primarily topological space

D. open - set topology let

• $X \in set$

then

• an open - set topology

for / in / \underline{of} / on / over X

 $=_{df}$ a cluster \mathcal{A} on X

st

(1) A is closed under finite intersection

ie

if \mathcal{E} is a finite subclass of \mathcal{A} , then $\bigcap \mathcal{E} \in \mathcal{A}$

(2) A is closed under arbitrary union

ie

if \mathcal{E} is a subclass of \mathcal{A} , then $\bigcap \mathcal{E} \in \mathcal{A}$

wh

the members of \mathcal{A} are called

open sets

D. closed - set topology

let

• $X \in set$

then

• a closed - set topology

for / in / <u>of</u> / on / over X

 $=_{df}$ a cluster \mathcal{A} on X

st

(1) A is closed under finite union

ie

if \mathcal{E} is a finite subclass of \mathcal{A} , then $\bigcup \mathcal{E} \in \mathcal{A}$

(2) A is closed under arbitrary intersection

ie

if \mathcal{E} is a subclass of \mathcal{A} , then $\bigcap \mathcal{E} \in \mathcal{A}$

wh

the members of \mathcal{A} are called

closed sets

D. interior topology

let

• $X \in set$

then

• an interior topology

for / in / \underline{of} / on / over X

 $=_{df}$ a function on PX to PX

 $=_{cl}$ the interior operator

 $=_{dn}$ int: PX \rightarrow PX wh int \leftarrow <u>int</u>erior

$$A \mapsto \text{int } A = \stackrel{o}{A} = A^{o}$$
$$=_{rd} A \text{ interior} = A \text{ ope } =_{cl} \text{ the interior of } A$$

st

(1) int is intersection - preserving

ie

 $int(A \cap B) = intA \cap intB \quad (A, B \in PX)$

(2) int is contractive

ie

int $A \subset A$ ($A \in PX$)

(3) int is space - preserving

ie

int X = X

D. closure topology

let

• $X \in set$

then

• a closure topology

for / in / <u>of</u> / on / overX

 $=_{df}$ a function on PX to PX

 $=_{cl}$ the closure operator

 $=_{dn}$ cls: PX \rightarrow PX wh cls \leftarrow <u>clos</u>ure

 $A \mapsto \operatorname{cls} A = \overline{A} = A^{-}$

 $=_{rd}$ A closure = A bar $=_{cl}$ the closure of A

st

(1) cls is union - preserving ie $cls(A \cup B) = cls A \cup cls B \quad (A, B \in PX)$ (2) cls is expansive ie $cls A \supset A \quad (A \in PX)$ (3) cls is empty - set - preserving ie $cls \emptyset = \emptyset$

D. neighborhood topology

let

• $X \in set$

then

• a neighborhood topology

for / in / \underline{of} / on / over X

 $=_{df}$ a family $(\mathcal{N}_{x} | x \in X)$ of filters on X

with X as index set

st

(1) $x \in \bigcap \mathcal{N}_{x}$ ($x \in X$) (2) $\forall x \in X. \forall U \in \mathcal{N}_{x}. \exists V \in \mathcal{N}_{x}. \forall y \in V. U \in \mathcal{N}_{y}$ wh

the members of \mathcal{N}_x ($x \in X$) are called neighborhoods of x

D. basic notions in an open - set topological space let

• $X \in \text{open}$ - set topological space

then

- a subset A of X is closed
- $=_{df}$ the complement of A is open
- the interior of a subset A of X
- $=_{df}$ the union of all open sets contained in A
- = the greatest open set contained in A
- the closure of a subset A of X
- $=_{df}$ the intersection of all closed sets containing A
- = the least closed set containing A
- a neighborhood of a point x of X
- $=_{df}$ a subset of X

that contains an open set that contains x

D. basic notions in a closed - set topological space let

• $X \in closed$ - set topological space

then

- a subset A of X is open
- $=_{df}$ the complement of A is closed
- the interior of a subset A of X
- $=_{df}$ the union of all open sets contained in A
- = the greatest open set contained in A
- the closure of a subset A of X
- $=_{df}$ the intersection of all closed sets containing A
- = the least closed set containing A
- a neighborhood of a point x of X
- $=_{df}$ a subset of X

that contains an open set that contains x

D. basic notions in an interior topological space let

• $X \in$ interior topological space then

- a subset A of X is open
- $=_{df}$ the interior of A equals A

• a subset A of X is closed

 $=_{df}$ the complement of A is open

the closure of a subset A of X
 =_{df} the complement of the interior of the complement of A

a neighborhood of a point x of X
=_{df} a subset of X
that contains an open set that contains x

D. basic notions in a closure topological space let

• $X \in$ closure topological space then

• a subset A of X is closed

 $=_{df}$ the closure of A equals A

• a subset A of X is open

 $=_{df}$ the complement of A is closed

the interior of a subset A of X
 =_{df} the complement of the closure of the complement of A

a neighborhood of a point x of X
=_{df} a subset of X
that contains an open set that contains x

D. basic notions in a neighborhood topological space let

• $X \in$ neighborhood topological space

then

- a subset A of X is open
- $=_{df}$ A is a neighborhood of every point of A
- a subset A of X is closed
- $=_{df}$ the complement of A is open
- the interior of a subset A of X
- $=_{df}$ the union of all open sets contained in A
- = the greatest open set contained in A
- the closure of a subset A of X
- $=_{df}$ the intersection of all closed sets containing A
- = the least closed set containing A