The Fascinating Fractious Egyptian Fractions

 \#69 of Gottschalk's GestaltsA Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2002

GG69-1 (58)
© 2002 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG69-2

D. fractions

- a real fraction
$==_{d f}$ an indicated quotient $\frac{\mathrm{a}}{\mathrm{b}}$
($=$ rd a over b)
of real numbers a and b with $b \neq 0$
wh
the dividend a of the quotient is called
the numerator of $\frac{a}{b}$
\&
the divisor b of the quotient is called
the denominator of $\frac{a}{b}$

GG69-3
\&
either the numerator a or the denominator b
of $\frac{a}{b}$
is called
an ator of $\frac{a}{b}$
wh
ator \leftarrow numerator $\&$ denominator
\&
the horizontal bar in the notation $\frac{a}{b}$
is called
the fraction bar of $\frac{a}{b}$;

GG69-4
note: the notion of real fraction includes the notation of the fraction bar; an alternative to the horizontal fraction bar is
the slant fraction bar / = the slash /
as in
$\frac{\mathrm{a}}{\mathrm{b}}=\mathrm{a} / \mathrm{b}$

GG69-5

- the value of a real fraction $\frac{a}{b}$
$={ }_{\mathrm{df}}$ the real number
denoted by the real fraction $\frac{a}{b}$
- a simple real fraction
$=_{\mathrm{df}}$ a real fraction st
neither ator contains a real fraction
- a complex real fraction
$=_{\mathrm{df}}$ a real fraction st
at least one ator contains a real fraction
- a proper real fraction
$={ }_{\mathrm{df}}$ a real fraction $\frac{\mathrm{a}}{\mathrm{b}} \mathrm{st}$
b >0
\&
$|\mathrm{a}|<\mathrm{b}$
wiet $\frac{|a|}{b}<1$
- an improper real fraction
$={ }_{\mathrm{df}}$ a real fraction $\frac{\mathrm{a}}{\mathrm{b}} \mathrm{st}$
b >0
\&
$|a| \geq b$
wiet $\frac{|a|}{b} \geq 1$

GG69-7

- a rational fraction
$={ }_{\mathrm{df}}$ a real fraction $\frac{\mathrm{a}}{\mathrm{b}}$
whose ators a and b are both rational numbers
- a weakly common fraction
$={ }_{d f}$ a real fraction $\frac{\mathrm{a}}{\mathrm{b}}$
whose ators a and b are both integers
- a (strictly) common fraction
$={ }_{d f}$ a real fraction $\frac{\mathrm{a}}{\mathrm{b}}$
whose ators a and b are both positive integers

GG69-8

- a mixed fraction
$={ }_{\mathrm{df}}$ an indicated sum of
a positive integer
\&
a proper common fraction
wi denoted by juxtaposition
as
two and three - fourths $=2+\frac{3}{4}=2 \frac{3}{4}$

GG69-9

- an irreducible fraction
$=\mathrm{a}$ fraction in lowest term
$=_{\mathrm{df}}$ a common fraction
whose ators are coprime
- a reducible fraction
$={ }_{\mathrm{df}}$ a common fraction
whose ators are not coprime
- to reduce a common fraction
$={ }_{\mathrm{df}}$ to divide both ators by
a plural common divisor of the ators
\& thus obtain a new common fraction
that is equal (in value) to the original

GG69-10

- a unit fraction
$==_{\mathrm{df}}$ a common fraction $\frac{1}{\mathrm{n}}$ st the numerator is unity
\&
the denominator n is a plural integer;
thus the unit fractions are
$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \cdots$
- the unit fraction set
$={ }_{\mathrm{df}}$ the set of all unit fractions
$=\left\{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \cdots\right\}$

GG69-11

- an egyptian fraction
$={ }_{d f}$ an indicated nonzero finite sum of distinct unit fractions
that are ordinarily written in strictly decreasing order
- the value of an egyptian faction
$={ }_{\mathrm{df}}$ the rational number that is its sum; it is said that: the egyptian fraction is a representation of the value, the egyptian fraction represents the value, the value is represented by the egyptian fraction
- a proper egyptian fraction
$={ }_{\mathrm{df}}$ an egyptian fraction whose value is strictly less than 1
- an improper egyptian fraction
$={ }_{\mathrm{df}}$ an egyptian fraction
whose value is weakly greater than 1
GG69-12
- the length of an egyptian fraction
$={ }_{d f}$ the number of terms
in the egyptian fraction
- an egyptian fraction
has minimum length
or
is of minimum length
or
is min-long
$={ }_{\mathrm{df}}$ the length of the egyptian fraction is minimal
among the lengths
of all the egyptian fractions
that have the same value
as the original egyptian fraction

GG69-13

- an egyptian fraction
has a minimum - maximum denominator
or
is min - max den
$=_{\mathrm{df}}$ the maximum denominator
of the egyptian fraction
is minimal
among the maximum denominators
of all the egyptian fractions
that have the same value as the original egyptian fraction

GG69-14

- an egyptian fraction is optimal
$=_{\mathrm{df}}$ the egyptian fraction is
min - long
\&
the maximum denominator
of the egyptian fraction
is minimal
among the maximum denominators
of all the min - long egyptian fractions
that have the same value as the original egyptian fraction

GG69-15
\square some convenient abbreviations
using the first three letters of the word

- integer = int
- positive = pos
- negative $=$ neg
- numerator = num
- denominator $=$ den
- maximum $/$ maximal $=\max$
- minimum $/$ minimal $=\mathrm{min}$
- optimum/optimal $=$ opt
also
- nonnegative $=$ nonneg
- nonpositive = nonpos
using the capitalized first letters of the words
- common fraction $=\mathrm{CF}$
- egyptian fraction = EF
- unit fraction = UF

GG69-16
E. some proper EFs

- all unit fractions
- $\frac{1}{2}+\frac{1}{3}=\frac{5}{6}$
- $\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$
- $\frac{1}{2}+\frac{1}{5}=\frac{7}{10}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{7}=\frac{41}{42}$
- $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}$
- $\frac{1}{3}+\frac{1}{5}+\frac{1}{7}=\frac{71}{105}$
- $\frac{1}{10}+\frac{1}{100}+\frac{1}{1000}+\frac{1}{10000}+\frac{1}{100000}=0.11111$
$\cdot \frac{1}{10}+\frac{1}{20}+\frac{1}{30}+\frac{1}{40}+\frac{1}{50}+\frac{1}{60}+\frac{1}{70}+\frac{1}{80}+\frac{1}{90}=\frac{7129}{25200}$
- $\frac{1}{8}+\frac{1}{120}=\frac{1}{9}+\frac{1}{45}=\frac{1}{10}+\frac{1}{30}=\frac{1}{12}+\frac{1}{20}=\frac{2}{15}$
- $\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{35}+\frac{1}{276}+\frac{1}{2415}=\frac{18}{23}$

GG69-17
E. proper EFs wa partial sums of geometric series with a unit fraction as ratio or equivalently sums of geometric progressions with a unit fraction as ratio
\square with ratio $=\frac{1}{2}$

- $\frac{1}{2}=\frac{1}{2}$
- $\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$
- $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}=\frac{7}{8}$
- $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}=\frac{15}{16}$
etc
\& ing
- $\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots+\frac{1}{2^{\mathrm{n}}}=\frac{2^{\mathrm{n}}-1}{2^{\mathrm{n}}}$
wh $n \in$ int ≥ 1

GG69-18
\square with ratio $=\frac{1}{3}$

- $\frac{1}{3}=\frac{1}{3}$
- $\frac{1}{3}+\frac{1}{9}=\frac{4}{9}$
- $\frac{1}{3}+\frac{1}{9}+\frac{1}{27}=\frac{13}{27}$
- $\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}=\frac{40}{81}$
etc
\& ing
- $\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\cdots+\frac{1}{3^{\mathrm{n}}}=\frac{\frac{1}{2}\left(3^{\mathrm{n}}-1\right)}{3^{\mathrm{n}}}$
wh $\mathrm{n} \in$ int ≥ 1

GG69-19
\square with ratio $=\frac{1}{r}$
wh $r \in$ int ≥ 2

- $\frac{1}{r}=\frac{1}{r}$
- $\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}^{2}}=\frac{\mathrm{r}+1}{\mathrm{r}^{2}}=\frac{\frac{1}{\mathrm{r}-1}\left(\mathrm{r}^{2}-1\right)}{\mathrm{r}^{2}}$
- $\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}^{2}}+\frac{1}{\mathrm{r}^{3}}=\frac{\mathrm{r}^{2}+\mathrm{r}+1}{\mathrm{r}^{3}}=\frac{\frac{1}{\mathrm{r}-1}\left(\mathrm{r}^{3}-1\right)}{\mathrm{r}^{3}}$
- $\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}^{2}}+\frac{1}{\mathrm{r}^{3}}+\frac{1}{\mathrm{r}^{4}}=\frac{\mathrm{r}^{3}+\mathrm{r}^{2}+\mathrm{r}+1}{\mathrm{r}^{4}}=\frac{\frac{1}{\mathrm{r}-1}\left(\mathrm{r}^{4}-1\right)}{\mathrm{r}^{4}}$ etc \& ing
- $\frac{1}{\mathrm{r}}+\frac{1}{\mathrm{r}^{2}}+\frac{1}{\mathrm{r}^{3}}+\cdots+\frac{1}{\mathrm{r}^{\mathrm{n}}}=\frac{\frac{1}{\mathrm{r}-1}\left(\mathrm{r}^{\mathrm{n}}-1\right)}{\mathrm{r}^{\mathrm{n}}}$ wh $\mathrm{n} \in$ int ≥ 1
- also termwise products of the above EFs by $\frac{1}{\mathrm{a}}$ wh $\mathrm{a} \in \mathrm{int} \geq 2$

GG69-20
D. harmonic numbers

- the harnomic number of index $n \in$ nonneg int
$=$ the nth harmonic number
$={ }_{\mathrm{dn}} \mathrm{H}_{\mathrm{n}}$ wh $\mathrm{H} \leftarrow \underline{\text { harmonic }}$
$={ }_{\mathrm{df}} 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{\mathrm{n}}$
$=\sum_{i=1}^{\mathrm{n}} \frac{1}{\mathrm{i}}$
$=$ the nth term of the harmonic sequence $(\mathrm{n} \geq 1)$
$=$ the nth partial sum of the harmonic series
- the harmonic sequence
$={ }_{\mathrm{df}}\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots\right)$
wi convergent to 0
- the harmonic series
$={ }_{\mathrm{df}} 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$
wi divergent

GG69-21
R. the harmonic numbers H_{n} wh $\mathrm{n} \in$ nonneg int are never integers except for $\mathrm{H}_{0}=0 \& \mathrm{H}_{1}=1$
R. note

- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{\mathrm{n}}=\mathrm{H}_{\mathrm{n}}-1$
wh $\mathrm{n} \in$ int ≥ 2

GG69-22
\square table of harmonic numbers H_{n}
from $\mathrm{n}=0$ to $\mathrm{n}=10$

- $\mathrm{H}_{0}=0$
- $\mathrm{H}_{1}=1$
- $\mathrm{H}_{2}=\frac{3}{2}$
- $\mathrm{H}_{3}=\frac{11}{6}$
- $\mathrm{H}_{4}=\frac{25}{12}$
- $\mathrm{H}_{5}=\frac{137}{60}$
- $\mathrm{H}_{6}=\frac{49}{20}$
- $\mathrm{H}_{7}=\frac{363}{140}$
- $\mathrm{H}_{8}=\frac{761}{280}$
- $\mathrm{H}_{9}=\frac{7129}{2520}$
- $\mathrm{H}_{10}=\frac{7381}{2520}$

GG69-23
E. some improper EFs

- $\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{5}=\frac{31}{30}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\mathrm{H}_{4}-1=\frac{13}{12}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}=\mathrm{H}_{5}-1=\frac{77}{60}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\mathrm{H}_{6}-1=\frac{29}{20}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\mathrm{H}_{7}-1=\frac{223}{140}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}=\mathrm{H}_{8}-1=\frac{481}{280}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}=\mathrm{H}_{9}-1=\frac{4609}{2520}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}=\mathrm{H}_{10}-1=\frac{4861}{2520}$

GG69-24

- $\frac{1}{2}+\frac{1}{3}+\frac{1}{15}+\frac{1}{22}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}=1$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{7}+\frac{1}{12}+\frac{1}{42}=\frac{3}{2}$
- $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{24}=2$

GG69-25
E. representations of unity by EFs
with length ranging from 3 to 12 ;
for the given length the max den is least

- $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
- $1=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{12}$
- $1=\frac{1}{2}+\frac{1}{4}+\frac{1}{10}+\frac{1}{12}+\frac{1}{15}$
- $1=\frac{1}{3}+\frac{1}{4}+\frac{1}{6}+\frac{1}{10}+\frac{1}{12}+\frac{1}{15}$
- $1=\frac{1}{3}+\frac{1}{4}+\frac{1}{9}+\frac{1}{10}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18}$
- $1=\frac{1}{3}+\frac{1}{5}+\frac{1}{9}+\frac{1}{10}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}$
- $1=\frac{1}{4}+\frac{1}{5}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{24}$
- $1=\frac{1}{5}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{12}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{24}$
- $1=\frac{1}{5}+\frac{1}{6}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{21}+\frac{1}{24}+\frac{1}{28}$
- $1=\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{14}+\frac{1}{15}+\frac{1}{18}+\frac{1}{20}+\frac{1}{24}+\frac{1}{28}+\frac{1}{30}$

GG69-26
E. representations of unity by EFs with all dens odd

- with the fewest terms viz 9
$1=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{15}+\frac{1}{33}+\frac{1}{45}+\frac{1}{385}$
- with the least max den viz 105
$1=\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11}+\frac{1}{33}+\frac{1}{35}+\frac{1}{45}+\frac{1}{55}+\frac{1}{77}+\frac{1}{105}$

GG69-27
E. using

- $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
repeatedly,
it follows that
- $\frac{3}{4}$
$=\frac{1}{2}+\frac{1}{4}$
$=\frac{1}{2}+\frac{1}{4} \times 1$
$=\frac{1}{2}+\frac{1}{8}+\frac{1}{12}+\frac{1}{24}$
$=\frac{1}{2}+\frac{1}{8}+\frac{1}{12}+\frac{1}{24} \times 1$
$=\frac{1}{2}+\frac{1}{8}+\frac{1}{12}+\frac{1}{48}+\frac{1}{72}+\frac{1}{144}$
etc
to an arbitrarily large number of terms

GG69-28
E. here are all 5 min - long representations of $\frac{19}{45}$ by EFs but only one is optimal

- $\frac{19}{45}$
$=\frac{1}{3}+\frac{1}{12}+\frac{1}{180} \in \min -$ long
$=\frac{1}{3}+\frac{1}{15}+\frac{1}{45} \in \min -$ long
$=\frac{1}{3}+\frac{1}{18}+\frac{1}{30} \in \min -$ long
$=\frac{1}{4}+\frac{1}{6}+\frac{1}{180} \in \min -$ long
$=\frac{1}{5}+\frac{1}{6}+\frac{1}{18} \in \mathrm{opt}$

GG69-29
R. an EF plus integer that approximates
$\pi=3.1415926 \cdots$
is
$3+\frac{1}{13}+\frac{1}{17}+\frac{1}{173}=3.1415269 \cdots$

- the Egyptian value of π
$=$ the approximation to π that the ancient Egyptians used
$=\left(\frac{16}{9}\right)^{2}=\frac{256}{81}=3.16049 \ldots$
T. the greedy algorithm
to find EFs that represent proper CFs
let
$\cdot \mathrm{a}, \mathrm{b} \in \operatorname{int} \mathrm{st} 1<\mathrm{a}<\mathrm{b} \& \mathrm{a}$ and b are coprime
- $\mathrm{n}=_{\mathrm{df}}$ the least integer st $\frac{\mathrm{a}}{\mathrm{b}}>\frac{1}{\mathrm{n}}$
then
- $\frac{\mathrm{a}}{\mathrm{b}}-\frac{1}{\mathrm{n}}=\frac{\mathrm{an}-\mathrm{b}}{\mathrm{bn}}$
- $a>a n-b>0$

GG69-31
T. rational numbers \& egyptian fractions

- every positive rational number is representable by infinitely many EFs
- every rational number
is representable as
an integer plus an EF
in infinitely many ways
- every noninteger rational number
is representable as
an integer plus a proper EF
in infinitely many ways

GG69-32

- every positive rational number
is representable by
an EF
with length arbitrarily bounded below
\&
with min den arbitrarily bounded below
- every positive rational number is representable by only finitely many EFs of a given length
if so representable at all
- every sum of n UFs
totaling strictly less than 1
is representable by
an EF of length n
wh $n \in$ pos int
- every proper CF a
b
is representable by
an EF of length a

GG69-34
T. representations of $3 / n$
by EFs of length 2
let

- $\mathrm{n} \in \mathrm{int} \geq 4$
then
tfsae:
- $\frac{3}{n}$ is representable by an EF of length 2
n
- n has a divisor that is congruent to $2 \bmod 3$ ie
- $\mathrm{n}=\mathrm{a}(3 \mathrm{k}+2)$
for some pos int a
\&
for some nonneg int k
R. note the following algebraic identity in the real field say
- $\frac{3}{\mathrm{a}(3 \mathrm{k}+2)}=\frac{1}{\mathrm{a}(\mathrm{k}+1)}+\frac{1}{\mathrm{a}(\mathrm{k}+1)(3 \mathrm{k}+2)}$
(dens $\neq 0$)

GG69-35
R. there are many simple algebraic identities in the real field say that are useful in the study of
UFs \& EFs;
here are a few
(dens $\neq 0$)

- $\frac{n}{a b}=\frac{1}{a \frac{a+b}{n}}+\frac{1}{b \frac{a+b}{n}}$
\& the special cases
- $\frac{1}{a b}=\frac{1}{a(a+b)}+\frac{1}{b(a+b)}$
- $\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a(a+1)}$
\& \therefore
- $\frac{2}{a}=\frac{1}{a}+\frac{1}{a+1}+\frac{1}{a(a+1)}$

GG69-36

- $\frac{\mathrm{n}}{\mathrm{a}}=\frac{1}{\mathrm{x}}+\frac{\mathrm{nx}-\mathrm{a}}{\mathrm{ax}}$

\& the special cases

- $\frac{1}{\mathrm{a}}=\frac{1}{\mathrm{x}}+\frac{\mathrm{x}-\mathrm{a}}{\mathrm{ax}}$
- $\frac{2}{\mathrm{a}}=\frac{1}{\mathrm{x}}+\frac{2 \mathrm{x}-\mathrm{a}}{\mathrm{ax}}$
- $\frac{3}{\mathrm{a}}=\frac{1}{\mathrm{x}}+\frac{3 \mathrm{x}-\mathrm{a}}{\mathrm{ax}}$
- $\frac{2}{2 n+1}=\frac{1}{n+1}+\frac{1}{(n+1)(2 n+1)}$
- $\frac{3}{3 n+2}=\frac{1}{n+1}+\frac{1}{(n+1)(3 n+2)}$
- $\frac{4}{4 n+3}=\frac{1}{n+1}+\frac{1}{(n+1)(4 n+3)}$ etc

GG69-37
E. applications of the identity

- $\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a(a+1)}$
include
- $\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$
- $\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$
- $\frac{1}{4}=\frac{1}{5}+\frac{1}{20}$
- $\frac{1}{5}=\frac{1}{6}+\frac{1}{30}$
etc

GG69-38
E. applications of the identity

- $\frac{2}{a}=\frac{1}{a}+\frac{1}{a+1}+\frac{1}{a(a+1)}$
include
- $\frac{2}{3}=\frac{1}{3}+\frac{1}{4}+\frac{1}{12}$
- $\frac{2}{5}=\frac{1}{5}+\frac{1}{6}+\frac{1}{130}$
- $\frac{2}{7}=\frac{1}{7}+\frac{1}{8}+\frac{1}{56}$
- $\frac{2}{9}=\frac{1}{9}+\frac{1}{10}+\frac{1}{90}$
etc

GG69-39
E. applications of the identity

- $\frac{1}{a b}=\frac{1}{a(a+b)}+\frac{1}{b(a+b)}$
include
- $\frac{1}{6}=\frac{1}{10}+\frac{1}{15}$
- $\frac{1}{12}=\frac{1}{21}+\frac{1}{28}$
- $\frac{1}{35}=\frac{1}{60}+\frac{1}{84}$
- $\frac{1}{63}=\frac{1}{112}+\frac{1}{144}$

GG69-40
E. applications of the identity

- $\frac{n}{a b}=\frac{1}{a \frac{a+b}{n}}+\frac{1}{b \frac{a+b}{n}}$
include
- $\frac{2}{15}=\frac{1}{12}+\frac{1}{20}$
- $\frac{3}{14}=\frac{1}{6}+\frac{1}{21}$
- $\frac{4}{15}=\frac{1}{6}+\frac{1}{10}$
- $\frac{5}{21}=\frac{1}{6}+\frac{1}{14}$

GG69-41
E. applications of the identity

- $\frac{2}{2 n+1}=\frac{1}{n+1}+\frac{1}{(n+1)(2 n+1)}$
include
- $\frac{2}{3}=\frac{1}{2}+\frac{1}{6}$
- $\frac{2}{5}=\frac{1}{3}+\frac{1}{15}$
- $\frac{2}{7}=\frac{1}{4}+\frac{1}{28}$
- $\frac{2}{9}=\frac{1}{5}+\frac{1}{45}$
etc

GG69-42
E. applications of the identity

- $\frac{3}{3 n+2}=\frac{1}{n+1}+\frac{1}{(n+1)(3 n+2)}$ include
- $\frac{3}{5}=\frac{1}{2}+\frac{1}{10}$
- $\frac{3}{8}=\frac{1}{3}+\frac{1}{24}$
- $\frac{3}{11}=\frac{1}{4}+\frac{1}{44}$
- $\frac{3}{14}=\frac{1}{5}+\frac{1}{70}$ etc

GG69-43
E. applications of the identity

- $\frac{1}{a}=\frac{1}{x}+\frac{x-a}{a x}$
include
- $\frac{1}{2}=\frac{1}{3}+\frac{1}{6}$
- $\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$
- $\frac{1}{4}=\frac{1}{6}+\frac{1}{12}$
- $\frac{1}{5}=\frac{1}{9}+\frac{2}{35}(\neg \mathrm{EF})$

GG69-44
E. applications of the identity

- $\frac{2}{\mathrm{a}}=\frac{1}{\mathrm{x}}+\frac{2 \mathrm{x}-\mathrm{a}}{\mathrm{ax}}$
include
- $\frac{2}{3}=\frac{1}{2}+\frac{1}{6}$
- $\frac{2}{3}=\frac{1}{3}+\frac{1}{3}(\neg \mathrm{EF})$
- $\frac{2}{3}=\frac{1}{4}+\frac{5}{12}(\neg \mathrm{EF})$
- $\frac{2}{3}=\frac{1}{5}+\frac{7}{15}(\neg \mathrm{EF})$
E. applications of the identity
- $\frac{3}{a}=\frac{1}{x}+\frac{3 x-a}{a x}$
include
- $\frac{3}{25}=\frac{1}{10}+\frac{1}{50}$
- $\frac{3}{55}=\frac{1}{20}+\frac{1}{220}=\frac{1}{22}+\frac{1}{110}$
- $\frac{3}{121}=\frac{1}{44}+\frac{1}{484}$
- $\frac{3}{149}=\frac{1}{50}+\frac{1}{7450}$

N . a convenient on - the - line notation
to denote

sums of UFs

is the following:

- $\frac{1}{\mathrm{a}}={ }_{\mathrm{dn}}$ [a]
- $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}={ }_{\mathrm{dn}}[\mathrm{a}, \mathrm{b}]$
- $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}={ }_{\mathrm{dn}} \quad[\mathrm{a}, \mathrm{b}, \mathrm{c}]$
- $\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}+\frac{1}{\mathrm{c}}+\frac{1}{\mathrm{~d}}={ }_{\mathrm{dn}}[\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}]$ etc
wh
$[\cdots]={ }_{r d}$ brac \cdots
\&
brac \leftarrow bracket

GG69-47
E. some proper CFs represented by all min - long EFs

- den $=2$
$\frac{1}{2}=[2]$
- den $=3$
$\frac{1}{3}=[3]$
$\frac{2}{3}=[2,6]$
- den $=4$
$\frac{1}{4}=[4]$
$\frac{2}{4}=\frac{1}{2}=[2]$
$\frac{3}{4}=[2,4]$

GG69-48

- den $=5$
$\frac{1}{5}=[5]$
$\frac{2}{5}=[3,15]$
$\frac{3}{5}=[2,10]$
$\frac{4}{5}=[2,4,20]=[2,5,10]$
- den $=6$
$\frac{1}{6}=[6]$
$\frac{2}{6}=\frac{1}{3}=[3]$
$\frac{3}{6}=\frac{1}{2}=$ [2]
$\frac{4}{6}=\frac{2}{3}=[2,6]$
$\frac{5}{6}=[2,3]$

GG69-49

$$
\begin{aligned}
& \cdot \text { den }=7 \\
& \frac{1}{7}=[7] \\
& \frac{2}{7}=[4,28] \\
& \frac{3}{7}=[3,11,231]=[3,12,84]=[3,14,42] \\
&=[3,15,35]=[4,6,84]=[4,7,28] \\
& \frac{4}{7}=[2,14] \\
& \frac{5}{7}=[2,5,70]=[2,6,21]=[2,7,14] \\
& \frac{6}{7}=[2,3,42]
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \text { den }=8 \\
& \frac{1}{8}=[8] \\
& \frac{2}{8}=\frac{1}{4}=[4] \\
& \frac{3}{8}=[3,24]=[4,8] \\
& \frac{4}{8}=\frac{1}{2}=[2] \\
& \frac{5}{8}=[2,8] \\
& \frac{6}{8}=\frac{3}{4}=[2,4] \\
& \frac{7}{8}=[2,3,24]=[2,4,8]
\end{aligned}
$$

$$
\begin{aligned}
& \bullet \text { den }=9 \\
& \frac{1}{9}=[9] \\
& \frac{2}{9}=[5,45]=[6,18] \\
& \frac{3}{9}=\frac{1}{3}=[3] \\
& \frac{4}{9}=[3,9] \\
& \frac{5}{9}=[2,18] \\
& \frac{6}{9}=\frac{2}{3}=[2,6] \\
& \frac{7}{9}=[2,4,36]=[2,6,9] \\
& \frac{8}{9}=[2,3,18]
\end{aligned}
$$

$$
\begin{aligned}
& \bullet \text { den }=10 \\
& \frac{1}{10}=[10] \\
& \frac{2}{10}=\frac{1}{5}=[5] \\
& \frac{3}{10}=[4,20]=[5,10] \\
& \frac{4}{10}=\frac{2}{5}=[3,15] \\
& \frac{5}{10}=\frac{1}{2}=[2] \\
& \frac{6}{10}=\frac{3}{5}=[2,10] \\
& \frac{7}{10}=[2,5] \\
& \frac{8}{10}=\frac{4}{5}=[2,4,20]=[2,5,10] \\
& \frac{9}{10}=[2,3,15]
\end{aligned}
$$

$$
\begin{aligned}
\cdot \text { den } & =11 \\
\frac{1}{11} & =[11] \\
\frac{2}{11} & =[6,66] \\
\frac{3}{11} & =[4,44] \\
\frac{4}{11} & =[3,33] \\
\frac{5}{11} & =[3,9,99]=[3,11,33]=[4,5,220] \\
\frac{6}{11} & =[2,22] \\
\frac{7}{11} & =[2,8,88]=[2,11,22]
\end{aligned}
$$

$$
\begin{aligned}
\frac{8}{11} & =[2,5,37,4070]=[2,5,38,1045] \\
& =[2,5,40,440]=[2,5,44,220] \\
& =[2,5,45,198]=[2,5,55,110] \\
& =[2,5,70,77]=[2,6,17,561] \\
& =[2,6,18,198]=[2,6,21,77] \\
& =[2,6,22,66]=[2,7,12,924] \\
& =[2,7,14,77]=[2,8,10,440] \\
& =[2,8,11,88] \\
\frac{9}{11} & =[2,4,15,660]=[2,4,16,176] \\
& =[2,4,20,55]=[2,4,22,44] \\
& =[2,5,10,55] \\
\frac{10}{11} & =[2,3,14,231]=[2,3,15,110] \\
& =[2,3,22,33]
\end{aligned}
$$

$$
\begin{aligned}
\cdot \text { den } & =12 \\
\frac{1}{12} & =[12] \\
\frac{2}{12} & =\frac{1}{6}=[6] \\
\frac{3}{12} & =\frac{1}{4}=[4] \\
\frac{4}{12} & =\frac{1}{3}=[3] \\
\frac{5}{12} & =[3,12]=[4,6] \\
\frac{6}{12} & =\frac{1}{2}=[2] \\
\frac{7}{12} & =[2,12]=[3,4] \\
\frac{8}{12} & =\frac{2}{3}=[2,6] \\
\frac{9}{12} & =\frac{3}{4}=[2,4] \\
\frac{10}{12} & =\frac{5}{6}=[2,3] \\
\frac{11}{12} & =[2,3,12]=[2,4,6]
\end{aligned}
$$

\square comments

- there are many algorithms for the conversion of common fractions into egyptian fractions
- there are many
unsolved problems
\& unanswered questions
\& challenging conjectures
about
unit fractions
\& egyptian fractions
\& related diophantine equations
- a study of the above topics often requires a computer, the more powerful the better
C. some other kinds of fractions are:
- complex number fractions
- continued fractions
- Farey fractions
- partial fractions
- percentages
- elements of the quotient field of an integral domain
- fractions in a field
- n - ary fractions ($\mathrm{n} \in \mathrm{int} \geq 2$)
inp
- binary fractions
- decimal fractions
- duodecimal fractions
- hexadecimal fractions

GG69-58

