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� symmetric functions
are here presented
in a formal syntactic way
ito variables & polynomials & expressions
rather than in an equivalent logically precise way
using inp the notion of function as set;
the justification of this classical approach is
that it is clear
how the set-theoretic description proceeds
and
that the syntactic language is
more picturesque & colorful
& often easier to use & understand;
the syntactic language
may help in making the formulas/functions
more vivid & visual & visualizable & tactile
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Standing  

• for the sake of simpler hypotheses

in an initial exposition of symmetric functions,

let the field of complex numbers be 

the algebraic base structure;

all considerations will be relative to

the complex number field;

it will be clear afterward (more or less)

what algebraic structures will support

what algebraic notions

and

what algebraic arguments

• let n  positive integer

• let x ,  x ,   ,  x  be n independent

complex variables

• other notation:  for any positive  integer m

the m - file m =  {1,  2,  3,   ,  m}

the m - seg m =  {0,  1,  2,  3,   ,  m}
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 the n +1 elementary symmetric functions

of n variables 

let

• k n =  {0,  1,  2,    

   elementary    degree k 

    for / in / of / on x ,  x ,   ,  x  

=  the kth elementary symmetric function 

     for / in / of / on x ,  x ,   ,  x  
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� examples

• n = 1

 =  1

 =  x

 n = 2
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 =  x  
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 =  1

 =  x

 =  x
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� in the expression for an elementary symmetric function
the canonical order
of the variables in a term
and
of the terms themselves
is taken to be
the lexicographic order of variables/terms
as is illustrated above
or, what amounts to the same thing here,
the numerical order of the subscripts

� the lowercase Greek letter sigma s with subscripts
may have been chosen
to denote the elementary symmetric functions
because
s is the initial letter of both
the word 'symmetric' & the word 'sum',
the elementary symmetric functions being
certain kinds of sums,
and because
the Latin/English letter ess S s
is the phonetic equivalent and the transliteration of
the Greek letter sigma S s ;
as a further notational comment
the subscript on sigma
matches
the number of factors
in each term of the polynomial
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� the elementary symmetric functions
are polynomials
& are also called
elementary symmetric polynomials;
but in usage
the word 'function' may nudge out
the word 'polynomial' here
on the grounds of history
and also
on the grounds of brevity
because 'function'
has 2 syllables and 8 letters
whereas 'polynomial' has
5 syllables and 10 letters
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� some summation - index notation 

for the symmetic functions

•  =  x  =  x  =  x  =  x

  =  x  =  x  =  x  =  x

  =  x

1 i

i=1

n

i

i n

i

1 i n

i

i

2 i

i,j=1
i<j

n

i

i,j n

i

1 i<j n

i

i<j

3

s

s

s

Â Â Â Â

Â Â Â Â

Œ £ £

Œ
<

£ £

•

•

x x x xj j

i j

j j

ii

i,j,k=1
i<j<k

n

i

i,j,k n

i

1 i<j<k n

i

i<j<k

 =  x  =  x

        =  x

x x x x x x

x x

etc

j k j k

i j k

j k

j k
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Œ
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� the generating function 

for the elementary symmetric functions 

is

• (1 + x   (1 + x    wh t  complex var

=  (1 + x t)    

=  

=  + +   +

1 n
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inp

• n =  1 

    1+ x  

=  +

 n =  2 

    (1+ x  

=  1 +  (x

=  +

 n =  3 

    (1+ x t) 

=  1 +  (x

1
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3
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) ( )

=  +0 1 2s s s s
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D.

( )

 the sequence of power - sum symmetric functions 

of n variables 

let

• k nonnegative integer

then

•  the power - sum symmetric function of degree k 

   for / in / of / on x ,  x ,   ,  x  

=  the kth power - sum symmetric function 

    for / in / of / on x ,  x ,   ,  x  

=  s x ,  x ,   ,  x

=  ess (sub) k of x ,  x ,   ,  x

=  s

=  ess (sub) k 

=  the polynomial of degree k in x

1 2 n
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whence
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� the generating function

for the power - sum symmetric functions

is

• 
1

1

1

1

1

1
  wh t  complex var

=  
1
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  the simple geometric series
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D. a function f(x ,  x ,   ,  x )

of the n 2 independent variables x ,  x ,   ,  x  

and 

which takes values in any set

is said to be

(totally) symmetric

provided that

the value of the function is invariant

under every permutation of the variables

or equivalently

the value of the function is invariant

under the transposition of every pair of variables

1 2 n

1 2 n

◊ ◊ ◊
≥ ◊ ◊ ◊
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eg

•  x   sym

 x  =   x   for all x ,  x

      

      

=    

=    

=    

2

2 1 1 2

f x

f x f x

f x x x sym

f x x x

f x x x

f x x x

f x x

( , )

( , ) ( , )

• ( , , )

( , , )

( , , )

( , , )

( , ,
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2 1

Œ
¤

Œ

Œ
¤

C

xx

for all x x x
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f x x x

f x x x

f x x x
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f x x x
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3
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2 1 3
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( , , )

( , , )

( , , )

    

  

      

=    

=    

=    

=    

=    

 

ŒC

allall x x x                                          GG68 -181 2 3, , ŒC



  

� every polynomial in symmetric functions 

is clearly again a symmetric function;

the elementary symmetric functions

are all symmetric functions;

so every polynomial in the elementary symmetric functions 

is again a symmetric polynomial;

the following theorem states that the converse also holds;

thus the class of elementary symmetic functons is  

a particularly important class of symmetric functions 

T. the fundamental theorem on symmetric polynomials:

every symmetric polynomial 

of n variables over the complex field

is uniquely expressible as 

a polynomial in the elementary symmetric functions

of these n variables over the complex field
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� the power - sum symmetric functions 

are all symmetric polynomials;

by the fundamental theorem on symmetric functions

every power - sum symmetric function  

is uniquely expressible as

a polynomial in the elementary symmetric functions;

explicit examples are given below:
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• n

s

s

s

s

s

etc

 =  1

 =  1

 =  x

s =  1 

    =  

 =  x  

   =  

 =  x  

     =  

 =  x  

     =  

 =  x  

     =  

 =  x  

     =  

1

0

1

1

1

1

1

s
s

s

s

s

s

s

s

0

1

0

1

1

2
2

1
2

3
3

1
3

4
4

1
4

5
5

1
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• n

x

x

s x

s x

s

s x

 =  2

 =  1

 =  x

 =  x  

s  =  2 

    =  2

 =  x  

    =  

 =  x  

     =  

 =  x + x  

    =  

 =  x  

     =  

1

1

0

1

1
2

1 2
3

1

s
s
s

s

s

s s

s s s

s

0

1 2

2 2

0

1 2

1

2
2

2

1
2

2

3
3

1
3

1 2

4
4

2
4

1

2

3

+

+

+

-

-

+
44

1
2

2 2
2

5
5

2
5

1
5

1
3

2 1 2
2

4 2

5 5

- +

+

- +

s s s

s s s s s

s x

etc

 =  x + x

     =  

1 3
5
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• n = 3

 =  1

 =  x

 =  x

 =  x

s  =  3 

    =  

 =  x + x  

    =  

 =  x + x  

    =  

 =  x + x + x

1

1

1

0

1 3

1
2

3
2

1 2
3

s
s
s
s

s

s

s s

0

1 2 3

2 2 1 3 2 3

3 2 3

0

1 2

1

2
2

2

1
2

2

3
3

3

2

+ +
+ +

+

+

-

x x

x x x x x

x x

s x

s x

s 33
3

1 3
4

1 3
5

 

    =  

 =  x + x  

    =  

 =  x + x

    =  
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• n = 4

 =  1

 =  x

 =  x

=  x

 =  x

s  =  4 

    =  

 =  x

1

1

 1

1

0

s
s
s
s
s

s

0

1 2 3 4

2 2 1 3 1 4 2 3 2 4 3 4

3 2 3 1 2 4 1 3 4 2 3 4

4 2 3 4

0

1

4

+ + +
+ + + + +

+ + +

x x x

x x x x x x x x x x x

x x x x x x x x x x x

x x x

s 11 3 4

1
2

3
2

4
2

1 2
3

3
3

4

1 3
4

4
4

+ x + x  

    =  

 =  x + x + x  

     =  

 =  x + x + x + x 3 

    =  

 =  x + x + x  

     =   

+

+

-

- +

+

-

x

s x

s

s x

2

1

2
2

2

1
2

2

3
3

1
3

1 2 3

4
4

2
4

1
4

1
2

2

2

3 3

4

s

s s

s s s s

s s s ++ + -

+

- + + - -

4 2 4

5 5 5 5 5

1 3 2
2

4

5
5

2
5

1
5

1
3

2 1
2

3 1 2
2

1 4 2 3

s s s s

s s s s s s s s s s s

s x

etc

 =  x + x + x

     =  
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note

formulas for s

no matter what n is

the formula for s

the formula

adds on terms

defining

:

'

 think of 

the   the s  ito the 

as n takes on various values;

no matter what the value of n is,  

the formula for s  is

s  =  n  ;  

   the value of  

    is

s  =   ;

thinking of the value of k 2 as fixed 

and 

thinking of the value of n as increasing from 1

in unit incremental steps,

  for s

   until n attains k

and then afterward stays the same;

  =  0 for k  int &  k > n,

the formulas for s  with larger n

collapse to 

the formulas for s with smaller n 

k

0

0 0

1 1

k

k

k

k 

s

s

s

s

1

≥

Œ

if they change at allif they change at all
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� to see a pattern in the formulas 

for the s' s ito the ' s,

look at the determinant forms

s  =  

      

     

s  =  

                0 

          

           

s  =  

                 0        0 

                  0

              1

         

2

1

2 1

3

1

2 1

1

4

1

2 1

1

s

s

s s

s

s s

s s s

s

s s

s s s

s s s

-

-

-

- -

-

-

- -

- -

- -

1

2

1

2 1

3

1

2 1

3

4

3 2

3 2

4 3 22 1      

   

s
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a general determinant can be written down

for the s' s ito the ' s

but the alternation in signs 

makes the notation rather unwieldly,

likely occupying a whole page

for the sake of attempted clarity;

later when the a' s are defined simply ito the ' s,

a general determinant for the s' s ito the a' s

which is easier on the eyes

and more readily comprehensible

is written down 

s

s

GG68-27



  

� just like the elementary symmetric functions,

the power - sum symmetric functions 

are also capable of expressing 

any symmetric polynomial

as a polynomial in these functions,

as witness the following theorem

T. every symmetric polynomial 

of n variables over the complex field 

is uniquely expressible as 

a polynomial in the power - sum symmetric functions

of these n variables over the complex field 
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� some examples of the    

 n = 1

 =  s

 =  s

 n =  2

 =  
1

2
s

 =  s

 =  
1

2

 n =  3

 =  
1

3
s

 =  s

 =  
1

2

 =  
1

6

0

1

0

1

0

1

s

s
s

s

s

s

s

s

s

s

' '

•

•

•

s ito the s s

s s

s s

s s s

0

1

0

1

2 1
2

2

0

1

2 1
2

2

3 1
3

1 23 2

-( )

-( )
- + ss3( )
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•

•

 n =  4

 =  
1

4
s

 =  s

 =  
1

2

 =  
1

6

 =  

 n =  5

 =  
1

5
s

 =  s

 =  
1

2

0

1

0

1

s

s

s

s

s

s

s

s

0

1

2 1
2

2

3 1
3

1 2 3

4 1
4

1
2

2 1 3 2
2

4

0

1

2

3 2

1

24
6 8 3 6

s s

s s s s

s s s s s s s

s

-( )
- +( )

- + + -( )

11
2

2

3 1
3

1 2 3

4 1
4

1
2

2 1 3 2
2

4

5 1
5

1
3

2 1
2

3 1 2
2

1 4 2 3 5

3 2

1

24
6 8 3 6

10 20 15

30 20 24

-( )
- +( )

- + + -( )
- + +
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s

s s s s

s s s s s s s

s s s s s s s

s s s s s

s

s

s

 =  
1

6

 =  

 =  
1

120
                        

(

)
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� the following determinant expresses

the ' s ito the s' s

 =  
1

k!
 

     1    0   0   0

    s     2   0   0

     s   3   0

 

    s  

   int &  1 k n

k

1

   1

k

s

s

s

s

s s

s s

wh k

k

1

2

3 2

1 1

0

0

0

◊ ◊ ◊
◊ ◊ ◊
◊ ◊ ◊

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊
◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊

Œ £ £

-
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� canonical polynomial &  canonical polynomial equation

the canonical polynomial P(x) 

over the complex field

determined by x  x    x  as zeros

&

the canonical polynomial equation P(x) =  0 

over the complex field 

determined by x  x    x  as roots

  

1 2 n

1 2 n

, , ,

, , ,

◊ ◊ ◊

◊ ◊ ◊
are described below
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let  a  be an arbitrarily chosen nonzero complex number

&

let x  complex var

   P(x)

& thence the polynomial equation P(x) =  0

as follows:

    P(x)

=    (a  =  0) 

=  

=  

=  

0

0

Œ

- - ◊ ◊ ◊ - /

-

+ + ◊ ◊ ◊+ +
=

-
-

=

-

’

Â

form the polynomial

a x x x x x x

a x x

a x a x a x a

a x

n

k
k

n

n n
n n

k
k

n
n k

0 1 2

0
1

0 1
1

1

0

( )( ) ( )

( )
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wh

a a

a a

a a

a a

a a

a a

n
n

n

k
k

k

0 0 0

1 0 1

2 0 2

3 0 3

0

0

1

1

 =      

 =   

 =      

 =   

 =   

 in general

 =          (k n)

s

s

s

s

s

s

-

-

-

- Œ

M

( )

&

( ) ˆ
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ift

a

a

a

a

a

a

a

a

a

a

n
n n

k
k k

 

 =     1

 =  

=     

=  

=  

 in general

 =             (k n)

s

s

s

s

s

s

0

1
1

0

2
2

0

3
3

0

0

0

1

1

-

-

-

- Œ

M

( )

&

( ) ˆ
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it is clear that 

the ' s and the a' s

are essentially equivalent

&

the distinction between the ' s and the a' s

is a slight notational difference

but this notational change 

will make certain expressions / formulas easier

to view &  handle ito of the a' s rather than the 

s

s

s' s
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� the preceding several pages
may be paraphrased by stating that
for a polynomial equation in one variable
that factors completely
(as always the case in the complex field),
the coefficients are equal to
the alternatingly signed
elementary symmetric functions
of the roots
times
the leading coefficient
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� the following determinant expresses

the a' s ito the s' s

a  =  

   1   0   0  0

   s   2   0  0

   s   s   3  0

 

   s    

 k  int &  1 k n

k

1

2 1
( )

!

-

◊ ◊ ◊
◊ ◊ ◊
◊ ◊ ◊

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊
◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊

Œ £ £

-

1

0

0

00

1

2

3

1 1

k

k k

k
a

s

s

s

s s

wh
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� the following determinant

expresses the s' s ito the a' s

s  =  

      a   0    0  0 0

   a    a   0  0

    a   a   a  0

   

     a   

 k int &  1 k n

k

0

1 0

2 1 0
( )-

◊ ◊ ◊
◊ ◊ ◊
◊ ◊ ◊

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊
◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊

Œ £ £

-

1
2 0

3 0
0

1

2

3

1 1

k

k

k k

a

a

a

a

ka a

wh
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T. Newton' s identities (first form)

•  =  0

wh k int &  1 k n

•  =  0

wh k int &  k n

( ) ( )

( )

- + -

Œ £ £

-

Œ ≥

=

-

-

=
-

Â

Â

1 1

1

0

1

0

i

i

k

i k i
k

k

i

i

n

i k i

s k

s

s s

s
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ion

•  =  0

wh k int &  1 k n

•  =  0

wh k int &  k n

0 1

0 1 n

s s s s

s s s

s s s k

s s s

k k
k

k
k

k

k k
n

k n

- + ◊ ◊ ◊+ - + -
Œ £ £

- + ◊ ◊ ◊+ -
Œ ≥

-
-

-

- -

1
1

1 1

1

1 1

1

( ) ( )

( )
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inp

s

s

s

s

s

s

(n,  k)

(1,  1)    =  0

(2,  1)    =  0

(2,  2)   s + 2  =  0

(3,  1)     =  0

(3,  2)    s + 2  =  0

(3,  3)    s + s a  =  0

etc

0

0

0 1 2

0

0 1 2

0 2 1 3

s s

s s
s s s

s s
s s s
s s s s

1 1

1 1

2 1

1 1

2 1

3 1 2 3

-

-
-

-
-
- -
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(n,  k)

(1,  1)   s  =  0

(1,  2)   s  =  0

(1,  3)   s  =  0

etc

(2,  2)   s + s  =  0

(2,  3)   s + s   =  0

(2,  4)   s + s  =  0

etc

(3,  3)   s

0 0

0 1

0 2

0 1 2 0

0 2 2 1

0 3 2 2

0

s s
s s
s s

s s s
s s s
s s s

s s

s

s

s

s

s

s

s

1 1

2 1

3 1

2 1

3 1

4 1

3 1

-
-
-

-
-
-

- 22 2 1 3 0

0 3 2 2 3 1

0 4 2 3 3 2

+ s s =  0

(3,  4)   s + s s   =  0

(3,  5)   s + s s  =  0

etc

etc

s s
s s s s
s s s s

-
- -
- -

s

s
4 1

5 1
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T. Newton' s identities (second form)

•  =  0

wh k int &  1 k n

•  =  0

wh k int &  k n

a s k a

a s

i
i

k

k i k

i
i

n

k i

=

-

-

=
-

Â

Â

+

Œ £ £

Œ ≥

0

1

0
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ion

• a a a  =  0

wh k int &  1 k n

• a a a  =  0

wh k int &  k n

0 1

0 1 n

s s s ka

s s s

k k k k

k k k n

+ + ◊ ◊ ◊+ +
Œ £ £

+ + ◊ ◊ ◊+
Œ ≥

- -

- -

1 1 1

1
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inp

s a

s a

s a

s a

s a

s a a

(n,  k)

(1,  1)   a  =  0

(2,  1)   a  =  0

(2,  2)   a s + 2a  =  0

(3,  1)    a  =  0

(3,  2)    a s + 2a  =  0

(3,  3)    a s + s a  =  0

etc

0

0

0 1 2

0

0 1 2

0 2 1 3

1 1

1 1

2 1

1 1

2 1

3 1 2 3

+

+
+

+
+
+ +
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(n,  k)

(1,  1)   a s  =  0

(1,  2)   a s  =  0

(1,  3)   a s  =  0

etc

(2,  2)   a s + a s  =  0

(2,  3)   a s +a s   =  0

(2,  4)   a s + a s  =  0

etc

(3,  3)   a s + a s +

0 0

0 1

0 2

0 1 2 0

0 2 2 1

0 3 2 2

0 2 2 1

s a

s a

s a

s a

s a

s a

s a

1 1

2 1

3 1

2 1

3 1

4 1

3 1

+
+
+

+
+
+

+ aa s =  0

(3,  4)   a s +a s + a s   =  0

(3,  5)   a s + a s +a s  =  0

etc

etc

3 0

0 3 2 2 3 1

0 4 2 3 3 2

s a

s a
4 1

5 1

+
+
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� Newton' s identities relate 

the        

    

 there are two forms of Newton' s identities;

one form consists of  together

and

the other form consists a' s &s' s together;

each form is a sequence of formulas 

depending on a pos int var k;  

each form is expressed by two equations 

because there is a change 

in the structure of the first equation 

that affects the last term

when the parameter k pos int var 

changes in possible value 

from weakly less than n

to weakly greater than n;

s

s

' & '

' ;

' & '

s the a s on the one hand

with

the s s on the other

thus

s s s

Œ
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the situation of two equations for each form

is brought about

at least partly because

there are only finitely many 

   infinitely  

  

since      vari    

because the second form does not contain 

the powers of 1 and the minus signs

that the first form contains,  

the second form is 

more compact and neater in appearance

s' & '

' ;

;

s a s

but there are many s s

the two forms are thoroughly equivalent

they are only slight notational ants of each other

-
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� the first equation of the second form of Newton's identities

is expressible as a matrix equation as follows:

1

s      2

s     s     3

s     s     s    4

s   s  s    n

  =  

1

2 1

3 2 1

1

M

M

M

M

M

n n n n

a

a

a

a

a

s

s

s

s- - ◊ ◊ ◊

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚1 2

1

2

3
0

1

2

3

˙̇
˙
˙
˙
˙
˙
˙
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� the second equation of the second form of Newton' s identities

may be thought of as a sequence 

of the inner product of two vectors

viz

a   a   a     a   =  0     wh k  int &  k n1 2 n0

1

2L

M

[ ]

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Œ ≥
-

-

-

s

s

s

s

k

k

k

k n
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D. a function f(x ,  x ,   ,  x )

of the n independent variables x ,  x ,   ,  x  

and 

which takes values in an additive group say 

is said to be

alternating

provided that

the value of the function ' changes sign'

(ie changes to the negation)

under the transposition of every pair of variables

1 2 n

1 2 n

◊ ◊ ◊
◊ ◊ ◊
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eg

•  x   alt

 x  =   x   for all x ,  x

      

          

=    

=    

=  

2

2 1 1 2

f x

f x f x

f x x x alt

f x x x

f x x x

f x x x

f x

( , )

( , ) ( , )

• ( , , )

( , , )

( , , )

( , , )

( ,

1

1 2

1 2 3

1 2 3

1 3 2

3 2 1

2

Œ
¤

- Œ

Œ
¤

-
-
-

C

   

    

  

          

=    

=    

=     

=        

=       

x x

for all x x x

and hence also

f x x x

f x x x

f x x x

f x x x

f x x x

f x

1 3

1 2 3

1 2 3

1 3 2

3 2 1

2 1 3

2 3 1

3

, )

, ,

( , , )

( , , )

( , , )

( , , )

( , , )

( ,

Œ

-
-
-

C

xx x

for all x x x
1 2

1 2 3

, )

, ,
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D

x j

i j

.

,

(

 the primitive alternating function / polynomial

• the primitive alternating function / polynomial 

of degree n 2 

for / in / of / on x ,  x ,   ,  x  

=  A(x ,  x ,   ,  x )

=  A

=  the polynomial of degree n in x ,  x ,   ,  x  

which is 

the product of the differences x  

of all 
n

2
 pairs  x  x  (i < j wh i,  j n) 

=

1 2 n

dn 1 2 n

ab

df 1 2 n

i

i j

i, j n

≥
◊ ◊ ◊

◊ ◊ ◊

◊ ◊ ◊

-

Ê
ËÁ

ˆ
¯̃

Œ

Œ
<

’’ -x )i x j
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� examples

• n =  2

A =  x

 n =  3

A =  (x x )(x

 n =  4

A 

=  (x x )(x (x (x (x

1

1 1 2

1 1 1 2 2 3

-

- - -

- - - - - -

x

x x x

x x x x x x

2

2 3 3

2 3 4 3 4 4

•

)( )

•

)( ) ) ) )
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R

so that A

.

;

)

 A is the simplest alternating polynomial in the x' s

& 

the square A  of A is a symmetric polynomial in the x' s;

hence A  is expressible 

as a polynomial in the ' s;

but a  is plus - or - minus an a over a

   is expressible as a polynomial

in the a' s over a

this latter form of A  

(with a factor to get rid of any denominator involving a

is taken to be the discriminant

of the polynomial P(x)

and

of the polynomial equation P(x) =  0,

the discriminant becoming a polynomial 

in the coefficients  of P(x) viz the a' s

2

2

0

0

2

0

\

s
s

2
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� the discriminant  

of the polynomial P(x)

and

of the polynomial equation P(x) =  0

is defined to be

the product of

a

 =  x )

 = a  =  a x )

0

i,j n

i
2

0 0

i,j n

i
2

D

D

2 2

2

2 2 2 2 2

n

i j

j

n n

i j

j

A x

whence

A x

-

Œ
<

- -

Œ
<

’

’

-

-

&

(

(
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� formulas for the discriminant 

 =  

=  

                          

                    

               

 

D a x x

a

x x x x

x x x x

n
i

i j n
i j

j

n

n

n

0
2 2 2

0
2 2

1 2 3

1
2

2
2

3
2 2

1 1 1 1

-

Œ
<

-

’ -

◊ ◊ ◊
◊ ◊ ◊

◊ ◊ ◊
◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊

( )
,

◊◊

◊ ◊ ◊

◊ ◊ ◊
◊ ◊ ◊
◊ ◊ ◊

◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊ ◊

- - - -

-

-

+

-

       

=  

            

            

           

  

   

x x x x

a

s s s s

s s s s

s s s s

s

n n n
n

n

n

n

n

n

n

1
1

2
1

3
1 1

0
2 2

0 1 2 1

1 2 3

2 3 4 1

1 ss s s

a
R P

n n n

n n

   

=   P

+ -

-

◊ ◊ ◊

- ¢( )

1 2 2

1

2

0
1

1
( ) ,

( )
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wh R P

the discrimi

  P  is the resultant 

of P(x) and its derivative P (x);

 nant  is a symmetric function 

of the roots x ,  x ,   ,  x

and effectively 

the square of their primitive alternating function;

the discriminant vanishes

iff

the equation P(x) =  0

has at least one multiple root;

the determinant on the x' s above

is called  

the Vandermonde determinant

V(x ,  x ,   ,  x ) 

of x ,  x ,   ,  x ;

it is a desideratum that the discriminant be 

a polynomial in the coefficients;

it turns out that the discriminant is

a homogeneous polynomial in the coefficients 

of degree 2n

1 2 n

1 2 n

1 2 n

, ¢( )
¢

◊ ◊ ◊

◊ ◊ ◊
◊ ◊ ◊

-

D

2
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� the capital Greek letter delta 

may have been chosen

to denote the discriminant

because

d is the initial letter of both

the word ' discriminant'  &  the word ' difference' ,

the discriminant being a product of differences,

and because

the Latin / English letter dee D d

is the phonetic equivalent and the transliteration of

the Greek letter delta  

D

D d
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� the discriminant of the quadratic equation

ax  =  0    (a =  0)

over the complex number field

is

 =  

note: the discriminant  

is the radicand 

in the  

 =  
b

      

2

2

+ + /

-

- ± -

bx c

b ac

quadratic formula

x
b ac

a
for the roots of the quadratic equation

D

D

2 4

4

2
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�  the discriminant of the cubic equation

 =  0    (a =  0)

over the complex number field

is 

 =  

 to see how this expression is related to

Cardano' s solution of the cubic equation,  

see below

ax bx cx d

b c abcd ac b d a d

note

3 2

2 2 3 3 2 218 4 4 27

+ + + /

+ - - -D

:
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� Cardano' s formula for solving the cubic

the three roots of the cubic equation

ax  =  0   (a =  0)

over the complex  number field 

are

x =  u +  v

wh

u =  

v =  

 cube roots are chosen so that 

their product is 

 next page)

3 + + + /

- + Ê
Ë

ˆ
¯ + Ê

Ë
ˆ
¯

- - Ê
Ë

ˆ
¯ + Ê

Ë
ˆ
¯

-

bx cx d

q p q

q p q

the

p

continued

2

3 2
3

3 2
3

2 3 2

2 3 2

3

&

&

&

(
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s

q
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t

r

s

t

 =  

 =  
2r

27

  =  
b

a

  =  
c

a

  =  
d

a

3

- +

- +

2

3

3
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note in

D
q p

appears under a square root sign

and appears twice

p

r s rst s r t t

a
b c abcd

:   the Cardano formula

the radicand

 =  
p

3
+  =  +

q

4
 twice     

 D    under a cube root sign;

now

D 

=  +
q

4

=  

=  

2

2

Ê
Ë

ˆ
¯

Ê
Ë

ˆ
¯

- + - - -( )
- +

3 2 3

3

2 2 3 3 2

4
2 2

2 27

27
1

108
18 4 4 27

1

108
18 -- - -( )

-

¥ ¥

4 4 27

1

108

3

3 3 2 2

4

3

ac b d a d

a

observe that

is

=  

  

108 =  4 27 =  2

 the common denominator of

the original form of D

2

D
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� the discriminant  of the quartic equation

 =  0    (a =  0)

over the complex number field

is given by the expansion

of the seventh order determinant

      b      c      d       e      0      0

0      a      b      c       d      e      0

0      0      a      b       c      d      e

4     3b    2c     d       0      0      0

0     4a    3b    2c      d       0     0

0      0     4a    3b     2c      d     0

0      0      0     4a     3b     2c    d

D

ax bx cx dx e4 3 2

1

+ + + + /

GG68-66



  

� bioline

Girolamo Cardano  (Italian form of name)

Jerome Cardan  (English / French form of name)

Hieronymus Cardanus  (Latin form of name)

1501-1576

Italian

mathematician,  astrologer,  astronomer,

philosopher,  physician,  physicist
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