A Smidgen of Symmetric Functions
 \#68 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2002

GG68-1 (67)
© 2002 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG68-2
\square symmetric functions
are here presented
in a formal syntactic way
ito variables \& polynomials \& expressions
rather than in an equivalent logically precise way using inp the notion of function as set; the justification of this classical approach is that it is clear
how the set-theoretic description proceeds and
that the syntactic language is
more picturesque \& colorful
\& often easier to use \& understand;
the syntactic language
may help in making the formulas/functions more vivid \& visual \& visualizable \& tactile

Standing Notation.

- for the sake of simpler hypotheses in an initial exposition of symmetric functions, let the field of complex numbers be the algebraic base structure;
all considerations will be relative to the complex number field;
it will be clear afterward (more or less)
what algebraic structures will support what algebraic notions and what algebraic arguments
- let $\mathrm{n} \in$ positive integer
- let $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ be n independent complex variables
- other notation: for any positive integer m the m - file $\underline{\mathrm{m}}=_{\mathrm{df}}\{1,2,3, \cdots, \mathrm{~m}\}$ the $\mathrm{m}-\operatorname{seg} \hat{\mathrm{m}}=_{\mathrm{df}}\{0,1,2,3, \cdots, m\}$ wh seg \leftarrow segment

GG68-4
D. the $n+1$ elementary symmetric functions of n variables
let
$\cdot \mathrm{k} \in \hat{\mathrm{n}}=\{0,1,2, \cdots, \mathrm{n}\}$
then

- the elementary symmetric function of degree k for / in / of / on $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$
$=$ the kth elementary symmetric function
for / in / of / on $x_{1}, x_{2}, \cdots, x_{n}$
$={ }_{\mathrm{dn}} \sigma_{\mathrm{k}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)$
$={ }_{r d} \operatorname{sig}(m a)(s u b) k$ of $x_{1}, x_{2}, \cdots, x_{n}$
$={ }_{\mathrm{ab}} \sigma_{\mathrm{k}}$
$={ }_{\mathrm{rd}} \operatorname{sig}(\mathrm{ma})(\mathrm{sub}) \mathrm{k}$
$=_{\mathrm{df}}$ the polynomial of degree k in $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$
which is the sum of all $\binom{n}{k}$ products
of $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ taken k at a time

\square examples

- $\mathrm{n}=1$
$\sigma_{0}=1$
$\sigma_{1}=\mathrm{x}_{1}$
- $\mathrm{n}=2$
$\sigma_{0}=1$
$\sigma_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}$
$\sigma_{2}=\mathrm{x}_{1} \mathrm{X}_{2}$
- $\mathrm{n}=3$
$\sigma_{0}=1$
$\sigma_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}$
$\sigma_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}$
$\sigma_{3}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}$
- $\mathrm{n}=4$
$\sigma_{0}=1$
$\sigma_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}$
$\sigma_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{3}+x_{2} x_{4}+x_{3} x_{4}$
$\sigma_{3}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{4}+\mathrm{x}_{1} \mathrm{x}_{3} \mathrm{x}_{4}+\mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}$
$\sigma_{4}=\mathrm{x}_{1} \mathrm{X}_{2} \mathrm{X}_{3} \mathrm{X}_{4}$
\square in the expression for an elementary symmetric function the canonical order
of the variables in a term
and
of the terms themselves
is taken to be
the lexicographic order of variables/terms
as is illustrated above
or, what amounts to the same thing here, the numerical order of the subscripts
\square the lowercase Greek letter sigma σ with subscripts
may have been chosen
to denote the elementary symmetric functions
because
s is the initial letter of both
the word 'symmetric' \& the word 'sum',
the elementary symmetric functions being
certain kinds of sums,
and because
the Latin/English letter ess S s
is the phonetic equivalent and the transliteration of
the Greek letter sigma $\Sigma \sigma$;
as a further notational comment
the subscript on sigma
matches
the number of factors
in each term of the polynomial

GG68-7
\square the elementary symmetric functions are polynomials
\& are also called elementary symmetric polynomials; but in usage the word 'function' may nudge out the word 'polynomial' here on the grounds of history and also
on the grounds of brevity because 'function'
has 2 syllables and 8 letters
whereas 'polynomial' has
5 syllables and 10 letters

GG68-8
\square some summation - index notation for the symmetic functions

$$
\begin{aligned}
\cdot \sigma_{1} & =\sum_{i=1}^{n} x_{i}=\sum_{i \in n} x_{i}=\sum_{1 \leq i \leq n} x_{i}=\sum_{i} x_{i} \\
\cdot \sigma_{2} & =\sum_{\substack{i, j=1 \\
i<j}}^{n} x_{i} x_{j}=\sum_{\substack{i, j \in \underline{n} \\
i<j}} x_{i} x_{j}=\sum_{1 \leq i<j \leq n} x_{i} x_{j}=\sum_{i<j} x_{i} x_{j} \\
\cdot \sigma_{3} & =\sum_{\substack{i, j, k=1 \\
i<j<k}}^{n} x_{i} x_{j} x_{k}=\sum_{\substack{i, j, k \in n \\
i<j<k}} x_{i} x_{j} x_{k}=\sum_{1 \leq i<j<k \leq n} x_{i} x_{j} x_{k} \\
& =\sum_{i<j<k} x_{i} x_{j} x_{k}
\end{aligned}
$$

etc

- σ_{k}

$$
\text { wh } \mathrm{k} \in \underline{\mathrm{n}}
$$

- also

$$
\sigma_{n}=\prod_{i=1}^{n} x_{i}=\prod_{i \in \underline{n}} x_{i}=\prod_{1 \leq i \leq n} x_{i}=\prod_{i} x_{i}
$$

$$
\begin{aligned}
& =\sum_{\substack{i_{1}, \cdots, i_{k}=1 \\
i_{1}<\cdots<i_{k}}}^{n} \mathrm{X}_{\mathrm{i}_{1}} \cdots \mathrm{x}_{\mathrm{i}_{\mathrm{k}}} \\
& =\sum_{\substack{i_{1}, \cdots, i_{k} \in \underline{n} \\
i_{1}<\cdots<i_{k}}} \mathrm{X}_{\mathrm{i}_{1}} \cdots \mathrm{X}_{\mathrm{i}_{\mathrm{k}}} \\
& =\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} X_{i_{1}} \cdots X_{i_{k}} \\
& =\quad \sum_{\mathrm{i}_{1}<\cdots<\mathrm{i}_{\mathrm{k}}} \mathrm{X}_{\mathrm{i}_{1}} \cdots \mathrm{X}_{\mathrm{i}_{\mathrm{k}}}
\end{aligned}
$$

\square the generating function for the elementary symmetric functions is

$$
\cdot\left(1+\mathrm{x}_{1} \mathrm{t}\right)\left(1+\mathrm{x}_{2} \mathrm{t}\right) \cdots\left(1+\mathrm{x}_{\mathrm{n}} \mathrm{t}\right) \quad \text { wh } \mathrm{t} \in \text { complex var }
$$

$$
=\prod_{1}^{\mathrm{n}}\left(1+\mathrm{x}_{\mathrm{i}} \mathrm{t}\right)
$$

$$
=\sum_{\mathrm{i}=0}^{\mathrm{n}} \sigma_{\mathrm{i}} \mathrm{t}^{\mathrm{i}}
$$

$$
=\sigma_{0}+\sigma_{1} \mathrm{t}+\sigma_{2} \mathrm{t}^{2}+\cdots+\sigma_{\mathrm{n}} \mathrm{t}^{\mathrm{n}}
$$

inp

$$
\begin{gathered}
\cdot \mathrm{n}=1 \Rightarrow \\
1+\mathrm{x}_{1} \mathrm{t} \\
=\sigma_{0}+\sigma_{1} \mathrm{t}
\end{gathered}
$$

- $\mathrm{n}=2 \Rightarrow$

$$
\left(1+x_{1} t\right)\left(1+x_{2} t\right)
$$

$$
=1+\left(x_{1}+x_{2}\right) t+\left(x_{1} x_{2}\right) t^{2}
$$

$$
=\sigma_{0}+\sigma_{1} t+\sigma_{2} \mathrm{t}^{2}
$$

- $\mathrm{n}=3 \Rightarrow$

$$
\left(1+x_{1} t\right)\left(1+x_{2} t\right)\left(1+x_{3} t\right)
$$

$$
=1+\left(x_{1}+x_{2}+x_{3}\right) t+\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right) t^{2}+\left(x_{1} x_{2} x_{3}\right) t^{3}
$$

$$
=\sigma_{0}+\sigma_{1} t+\sigma_{2} \mathrm{t}^{2}+\sigma_{3} \mathrm{t}^{3}
$$

D. the sequence of power - sum symmetric functions of n variables
let

- $\mathrm{k} \in$ nonnegative integer
then
- the power - sum symmetric function of degree k for / in / of / on $x_{1}, x_{2}, \cdots, x_{n}$
$=$ the kth power - sum symmetric function
for / in / of / on $x_{1}, x_{2}, \cdots, x_{n}$
$={ }_{d n} \mathrm{~s}_{\mathrm{k}}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)$
$=_{r d}$ ess (sub) k of $x_{1}, x_{2}, \cdots, x_{n}$
$={ }_{a b} \mathrm{~S}_{\mathrm{k}}$
$={ }_{\text {rd }}$ ess (sub) k
$=_{\mathrm{df}}$ the polynomial of degree k in $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ which is the sum of the kth powers of $x_{1}, x_{2}, \cdots, x_{n}$
$=\mathrm{x}_{1}{ }^{\mathrm{k}}+\mathrm{x}_{2}{ }^{\mathrm{k}}+\cdots+\mathrm{x}_{\mathrm{n}}{ }^{\mathrm{k}}$
$=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{X}_{\mathrm{i}}{ }^{\mathrm{k}}$
GG68-13
whence

$$
\begin{aligned}
& \mathrm{s}_{0}=\mathrm{x}_{1}^{0}+\mathrm{x}_{2}^{0}+\cdots+\mathrm{x}_{\mathrm{n}}^{0}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{0}=\mathrm{n} \\
& \mathrm{~s}_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}+\cdots+\mathrm{x}_{\mathrm{n}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}} \\
& \mathrm{~s}_{2}=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\cdots+\mathrm{x}_{\mathrm{n}}^{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{2} \\
& \mathrm{~s}_{3}=\mathrm{x}_{1}^{3}+\mathrm{x}_{2}^{3}+\cdots+\mathrm{x}_{\mathrm{n}}^{3}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{3}
\end{aligned}
$$

etc

$$
\mathrm{s}_{\mathrm{k}}=\mathrm{x}_{1}^{\mathrm{k}}+\mathrm{x}_{2}^{\mathrm{k}}+\cdots+\mathrm{x}_{\mathrm{n}}^{\mathrm{k}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}^{\mathrm{k}}
$$

\square the generating function for the power - sum symmetric functions is

- $\frac{1}{1-\mathrm{x}_{1} \mathrm{t}}+\frac{1}{1-\mathrm{x}_{2} \mathrm{t}}+\cdots+\frac{1}{1-\mathrm{x}_{\mathrm{n}} \mathrm{t}}$ wh $\mathrm{t} \in$ complex var
$=\sum_{i=1}^{n} \frac{1}{1-x_{i} t}$
$=\sum_{\mathrm{i}=0}^{\infty} \mathrm{s}_{\mathrm{i}} \mathrm{t}^{\mathrm{i}}$
$=\mathrm{s}_{0}+\mathrm{s}_{1} \mathrm{t}+\mathrm{s}_{2} \mathrm{t}^{2}+\cdots$
note that the simple geometric series
$\frac{1}{1-\mathrm{x}}=1+\mathrm{x}+\mathrm{x}^{2}+\mathrm{x}^{3}+\cdots$
plays a role here
inp

$$
\begin{aligned}
\bullet & \mathrm{n}=1 \Rightarrow \\
& \frac{1}{1-\mathrm{x}_{1} \mathrm{t}} \\
= & 1+\mathrm{x}_{1} \mathrm{t}+\mathrm{x}_{1}{ }^{2} \mathrm{t}^{2}+\mathrm{x}_{1}{ }^{3} \mathrm{t}^{3}+\cdots \\
= & \mathrm{s}_{0}+\mathrm{s}_{1} \mathrm{t}+\mathrm{s}_{2} \mathrm{t}^{2}+\mathrm{s}_{\mathrm{s}} \mathrm{t}^{3}+\cdots
\end{aligned}
$$

- $\mathrm{n}=2 \Rightarrow$

$$
\frac{1}{1-\mathrm{x}_{1} \mathrm{t}}+\frac{1}{1-\mathrm{x}_{2} \mathrm{t}}
$$

$$
=\left(1+x_{1} t+x_{1}{ }^{2} t^{2}+x_{1}{ }^{3} t^{3}+\cdots\right)+\left(1+x_{2} t+x_{2}{ }^{2} t^{2}+x_{1}^{3} t^{3}+\cdots\right)
$$

$$
=2+\left(\mathrm{x}_{1}+\mathrm{x}_{2}\right) \mathrm{t}+\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right) \mathrm{t}^{2}+\left(\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}\right) \mathrm{t}^{3}+\cdots
$$

$$
=\mathrm{s}_{0}+\mathrm{s}_{1} \mathrm{t}+\mathrm{s}_{2} \mathrm{t}^{2}+\mathrm{s}_{\mathrm{s}} \mathrm{t}^{3}+\cdots
$$

D. a function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)$
of the $\mathrm{n} \geq 2$ independent variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ and
which takes values in any set
is said to be
(totally) symmetric
provided that
the value of the function is invariant under every permutation of the variables
or equivalently
the value of the function is invariant under the transposition of every pair of variables

GG68-17

eg

- $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \operatorname{sym}$
\Leftrightarrow
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{C}$
- $f\left(x_{1}, x_{2}, x_{3}\right) \in \operatorname{sym}$
\Leftrightarrow
$\begin{aligned} & f\left(x_{1}, x_{2}, x_{3}\right) \\ = & f\left(x_{1}, x_{3}, x_{2}\right)\end{aligned}$
$=\mathrm{f}\left(\mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{1}\right)$
$=\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{3}\right)$
for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathbb{C}$ and hence also

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right) \\
= & f\left(x_{1}, x_{3}, x_{2}\right)
\end{aligned}
$$

$$
=\mathrm{f}\left(\mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{1}\right)
$$

$$
=\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{3}\right)
$$

$$
=\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{1}\right)
$$

$$
=\mathrm{f}\left(\mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{1}\right)
$$

for all $x_{1}, x_{2}, x_{3} \in \mathbb{C}$
GG68-18
\square every polynomial in symmetric functions
is clearly again a symmetric function;
the elementary symmetric functions
are all symmetric functions;
so every polynomial in the elementary symmetric functions is again a symmetric polynomial; the following theorem states that the converse also holds; thus the class of elementary symmetic functons is a particularly important class of symmetric functions
T. the fundamental theorem on symmetric polynomials: every symmetric polynomial of n variables over the complex field is uniquely expressible as
a polynomial in the elementary symmetric functions of these n variables over the complex field

GG68-19
\square the power - sum symmetric functions are all symmetric polynomials; by the fundamental theorem on symmetric functions every power - sum symmetric function is uniquely expressible as a polynomial in the elementary symmetric functions; explicit examples are given below:

- $\mathrm{n}=1$

$$
\begin{aligned}
& \sigma_{0}=1 \\
& \sigma_{1}=\mathrm{x}_{1}
\end{aligned}
$$

$$
\mathrm{s}_{0}=1
$$

$$
=\sigma_{0}
$$

$$
\mathrm{s}_{1}=\mathrm{x}_{1}
$$

$$
=\sigma_{1}
$$

$$
\mathrm{s}_{2}=\mathrm{x}_{1}{ }^{2}
$$

$$
=\sigma_{1}^{2}
$$

$$
s_{3}=x_{1}{ }^{3}
$$

$$
=\sigma_{1}^{3}
$$

$$
\mathrm{s}_{4}=\mathrm{x}_{1}{ }^{4}
$$

$$
=\sigma_{1}^{4}
$$

$$
s_{5}=x_{1}{ }^{5}
$$

$$
=\sigma_{1}{ }^{5}
$$

etc

GG68-21

- $\mathrm{n}=2$

$$
\begin{aligned}
& \sigma_{0}=1 \\
& \sigma_{1}=\mathrm{x}_{1}+\mathrm{x}_{2} \\
& \sigma_{2}=\mathrm{x}_{1} \mathrm{x}_{2}
\end{aligned}
$$

$$
\mathrm{s}_{0}=2
$$

$$
=2 \sigma_{0}
$$

$$
\mathrm{s}_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}
$$

$$
=\sigma_{1}
$$

$$
\mathrm{s}_{2}=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}
$$

$$
=\sigma_{1}^{2}-2 \sigma_{2}
$$

$$
s_{3}=x_{1}^{3}+x_{2}^{3}
$$

$$
=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}
$$

$$
s_{4}=x_{1}^{4}+x_{2}^{4}
$$

$$
=\sigma_{1}^{4}-4 \sigma_{1}^{2} \sigma_{2}+2 \sigma_{2}^{2}
$$

$$
s_{5}=x_{1}{ }^{5}+x_{2}{ }^{5}+x_{3}{ }^{5}
$$

$$
=\sigma_{1}^{5}-5 \sigma_{1}^{3} \sigma_{2}+5 \sigma_{1} \sigma_{2}^{2}
$$

etc

GG68-22

- $\mathrm{n}=3$

$$
\begin{aligned}
& \sigma_{0}=1 \\
& \sigma_{1}=x_{1}+x_{2}+x_{3} \\
& \sigma_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} \\
& \sigma_{3}=x_{1} x_{2} x_{3}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{s}_{0} & =3 \\
& =3 \sigma_{0}
\end{aligned}
$$

$$
\mathrm{s}_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}
$$

$$
=\sigma_{1}
$$

$$
\mathrm{s}_{2}=\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}
$$

$$
=\sigma_{1}^{2}-2 \sigma_{2}
$$

$$
s_{3}=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}
$$

$$
=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3}
$$

$$
s_{4}=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}
$$

$$
=\sigma_{1}^{4}-4 \sigma_{1}^{2} \sigma_{2}+4 \sigma_{1} \sigma_{3}+2 \sigma_{2}^{2}
$$

$$
s_{5}=x_{1}{ }^{5}+x_{2}{ }^{5}+x_{3}{ }^{5}
$$

$$
=\sigma_{1}^{5}-5 \sigma_{1}^{3} \sigma_{2}+5 \sigma_{1}^{2} \sigma_{3}+5 \sigma_{1} \sigma_{2}^{2}-5 \sigma_{2} \sigma_{3}
$$

etc
GG68-23

- $\mathrm{n}=4$

$$
\begin{aligned}
& \sigma_{0}=1 \\
& \sigma_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4} \\
& \sigma_{2}=\mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{x}_{1} \mathrm{x}_{3}+\mathrm{x}_{1} \mathrm{x}_{4}+\mathrm{x}_{2} \mathrm{x}_{3}+\mathrm{x}_{2} \mathrm{x}_{4}+\mathrm{x}_{3} \mathrm{x}_{4} \\
& \sigma_{3}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}+\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{4}+\mathrm{x}_{1} \mathrm{x}_{3} \mathrm{x}_{4}+\mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4} \\
& \sigma_{4}=\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3} \mathrm{x}_{4}
\end{aligned}
$$

$$
s_{0}=4
$$

$$
=4 \sigma_{0}
$$

$$
\mathrm{s}_{1}=\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}
$$

$$
=\sigma_{1}
$$

$$
s_{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}
$$

$$
=\sigma_{1}^{2}-2 \sigma_{2}
$$

$$
s_{3}=x_{1}{ }^{3}+x_{2}^{3}+x_{3}^{3}+x_{4} 3
$$

$$
=\sigma_{1}^{3}-3 \sigma_{1} \sigma_{2}+3 \sigma_{3}
$$

$$
s_{4}=x_{1}^{4}+x_{2}^{4}+x_{3}^{4}+x_{4}^{4}
$$

$$
=\sigma_{1}^{4}-4 \sigma_{1}^{2} \sigma_{2}+4 \sigma_{1} \sigma_{3}+2 \sigma_{2}^{2}-4 \sigma_{4}
$$

$$
s_{5}=x_{1}^{5}+x_{2}^{5}+x_{3}^{5}+x_{4}^{5}
$$

$$
=\sigma_{1}^{5}-5 \sigma_{1}^{3} \sigma_{2}+5 \sigma_{1}^{2} \sigma_{3}+5 \sigma_{1} \sigma_{2}^{2}-5 \sigma_{1} \sigma_{4}-5 \sigma_{2} \sigma_{3}
$$

etc
note: think of
the formulas for the s_{k} ito the σ ' s
as n takes on various values;
no matter what the value of n is,
the formula for s_{0} is
$\mathrm{s}_{0}=\mathrm{n} \sigma_{0} ;$
no matter what the value of n is
the formula for s_{1} is
$\mathrm{s}_{1}=\sigma_{1} ;$
thinking of the value of $k \geq 2$ as fixed
and
thinking of the value of n as increasing from 1
in unit incremental steps,
the formula for s_{k}
adds on terms until n attains k
and then afterward stays the same;
defining $\sigma_{\mathrm{k}}=0$ for $\mathrm{k} \in \operatorname{int} \& \mathrm{k}>\mathrm{n}$, the formulas for s_{k} with larger n
collapse to
the formulas for s_{k} with smaller n
if they change at all
\square to see a pattern in the formulas for the s's ito the σ 's, look at the determinant forms

$$
\mathrm{s}_{2}=\left|\begin{array}{cc}
\sigma_{1} & -1 \\
-2 \sigma_{2} & \sigma_{1}
\end{array}\right|
$$

$\mathrm{s}_{3}=\left|\begin{array}{ccc}\sigma_{1} & -1 & 0 \\ -2 \sigma_{2} & \sigma_{1} & -1 \\ 3 \sigma_{3} & -\sigma_{2} & \sigma_{1}\end{array}\right|$
$\mathrm{s}_{4}=\left|\begin{array}{cccc}\sigma_{1} & -1 & 0 & 0 \\ -2 \sigma_{2} & \sigma_{1} & -1 & 0 \\ 3 \sigma_{3} & -\sigma_{2} & \sigma_{1} & -1 \\ -4 \sigma_{4} & \sigma_{3} & -\sigma_{2} & \sigma_{1}\end{array}\right|$
a general determinant can be written down for the s s ito the $\sigma^{\prime} \mathrm{s}$
but the alternation in signs
makes the notation rather unwieldly,
likely occupying a whole page
for the sake of attempted clarity;
later when the a's are defined simply ito the $\sigma^{\prime} \mathrm{s}$, a general determinant for the s ' s ito the a ' s
which is easier on the eyes
and more readily comprehensible
is written down

GG68-27
\square just like the elementary symmetric functions, the power - sum symmetric functions
are also capable of expressing any symmetric polynomial as a polynomial in these functions, as witness the following theorem
T. every symmetric polynomial
of n variables over the complex field is uniquely expressible as
a polynomial in the power-sum symmetric functions of these n variables over the complex field

GG68-28
\square some examples of the σ 's ito the s's

$$
\begin{aligned}
& \bullet \mathrm{n}=1 \\
& \sigma_{0}=\mathrm{s}_{0} \\
& \sigma_{1}=\mathrm{s}_{1}
\end{aligned}
$$

- $\mathrm{n}=2$
$\sigma_{0}=\frac{1}{2} \mathrm{~s}_{0}$
$\sigma_{1}=\mathrm{s}_{1}$
$\sigma_{2}=\frac{1}{2}\left(\mathrm{~s}_{1}{ }^{2}-\mathrm{s}_{2}\right)$
- $\mathrm{n}=3$

$$
\sigma_{0}=\frac{1}{3} \mathrm{~s}_{0}
$$

$$
\sigma_{1}=s_{1}
$$

$$
\sigma_{2}=\frac{1}{2}\left(\mathrm{~s}_{1}^{2}-\mathrm{s}_{2}\right)
$$

$$
\sigma_{3}=\frac{1}{6}\left(\mathrm{~s}_{1}^{3}-3 \mathrm{~s}_{1} \mathrm{~s}_{2}+2 \mathrm{~s}_{3}\right)
$$

$$
\begin{aligned}
& \bullet \mathrm{n}=4 \\
& \sigma_{0}=\frac{1}{4} \mathrm{~s}_{0} \\
& \sigma_{1}=\mathrm{s}_{1} \\
& \sigma_{2}=\frac{1}{2}\left(\mathrm{~s}_{1}^{2}-\mathrm{s}_{2}\right) \\
& \sigma_{3}=\frac{1}{6}\left(\mathrm{~s}_{1}^{3}-3 \mathrm{~s}_{1} \mathrm{~s}_{2}+2 \mathrm{~s}_{3}\right) \\
& \sigma_{4}=\frac{1}{24}\left(\mathrm{~s}_{1}^{4}-6 \mathrm{~s}_{1}^{2} \mathrm{~s}_{2}+8 \mathrm{~s}_{1} \mathrm{~s}_{3}+3 \mathrm{~s}_{2}^{2}-6 \mathrm{~s}_{4}\right) \\
& \cdot \mathrm{n}=5 \\
& \sigma_{0}=\frac{1}{5} \mathrm{~s}_{0} \\
& \sigma_{1}=\mathrm{s}_{1} \\
& \sigma_{2}=\frac{1}{2}\left(\mathrm{~s}_{1}^{2}-\mathrm{s}_{2}\right) \\
& \sigma_{3}=\frac{1}{6}\left(\mathrm{~s}_{1}^{3}-3 \mathrm{~s}_{1} \mathrm{~s}_{2}+2 \mathrm{~s}_{3}\right) \\
& \sigma_{4}=\frac{1}{24}\left(\mathrm{~s}_{1}^{4}-6 \mathrm{~s}_{1}^{2} \mathrm{~s}_{2}+8 \mathrm{~s}_{1} \mathrm{~s}_{3}+3 \mathrm{~s}_{2}^{2}-6 \mathrm{~s}_{4}\right) \\
& \sigma_{5}=\frac{1}{120}\left(\mathrm{~s}_{1}^{5}-10 \mathrm{~s}_{1}^{3} \mathrm{~s}_{2}+20 \mathrm{~s}_{1}^{2} \mathrm{~s}_{3}+15 \mathrm{~s}_{1} \mathrm{~s}_{2}^{2}\right.
\end{aligned}
$$

\square the following determinant expresses the σ 's ito the s's
$\sigma_{k}=\frac{1}{\mathrm{k}!}\left|\begin{array}{cccccc}\mathrm{s}_{1} & 1 & 0 & 0 & 0 & \cdots \\ \mathrm{~s}_{2} & \mathrm{~s}_{1} & 2 & 0 & 0 & \cdots \\ \mathrm{~s}_{3} & \mathrm{~s}_{2} & \mathrm{~s}_{1} & 3 & 0 & \cdots \\ \cdots \cdots & \cdots & \cdots & \cdots & \cdots \cdots & \cdots \\ \mathrm{~s}_{\mathrm{k}} & \mathrm{s}_{\mathrm{k}-1} & \cdots & \cdots & \cdots & \cdots \\ \mathrm{~s}_{1}\end{array}\right|$
wh $\mathrm{k} \in \operatorname{int} \& 1 \leq \mathrm{k} \leq \mathrm{n}$
\square canonical polynomial \& canonical polynomial equation
the canonical polynomial $\mathrm{P}(\mathrm{x})$
over the complex field determined by $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ as zeros \&
the canonical polynomial equation $\mathrm{P}(\mathrm{x})=0$
over the complex field determined by $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ as roots are described below
let a_{0} be an arbitrarily chosen nonzero complex number \&
let $x \in$ complex var
form the polynomial $\mathrm{P}(\mathrm{x})$
\& thence the polynomial equation $\mathrm{P}(\mathrm{x})=0$
as follows:
$\mathrm{P}(\mathrm{x})$
$=\mathrm{a}_{0}\left(\mathrm{x}-\mathrm{x}_{1}\right)\left(\mathrm{x}-\mathrm{x}_{2}\right) \cdots\left(\mathrm{x}-\mathrm{x}_{\mathrm{n}}\right)\left(\mathrm{a}_{0} \neq 0\right)$
$=\mathrm{a}_{0} \prod^{\mathrm{n}}\left(\mathrm{x}-\mathrm{x}_{\mathrm{k}}\right)$ $\mathrm{k}=1$
$=a_{0} x^{n}+a_{1} x^{n-1}+\cdots+a_{n-1} x+a_{n}$
$=\sum_{k=0}^{n} a_{k} x^{n-k}$

wh

$$
a_{0}=a_{0} \sigma_{0}
$$

$$
a_{1}=-a_{0} \sigma_{1}
$$

$$
a_{2}=a_{0} \sigma_{2}
$$

$$
a_{3}=-a_{0} \sigma_{3}
$$

$$
\vdots
$$

$$
\mathrm{a}_{\mathrm{n}}=(-1)^{\mathrm{n}} \mathrm{a}_{0} \sigma_{\mathrm{n}}
$$

\& in general

$$
\mathrm{a}_{\mathrm{k}}=(-1)^{\mathrm{k}} \mathrm{a}_{0} \sigma_{\mathrm{k}} \quad(\mathrm{k} \in \hat{\mathrm{n}})
$$

GG68-34
ift

$$
\sigma_{0}=1
$$

$$
\sigma_{1}=-\frac{\mathrm{a}_{1}}{\mathrm{a}_{0}}
$$

$$
\sigma_{2}=\frac{\mathrm{a}_{2}}{\mathrm{a}_{0}}
$$

$$
\sigma_{3}=-\frac{a_{3}}{a_{0}}
$$

:

$$
\sigma_{\mathrm{n}}=(-1)^{\mathrm{n}} \frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{a}_{0}}
$$

\& in general

$$
\sigma_{\mathrm{k}}=(-1)^{\mathrm{k}} \frac{\mathrm{a}_{\mathrm{k}}}{\mathrm{a}_{0}} \quad(\mathrm{k} \in \hat{\mathrm{n}})
$$

GG68-35
it is clear that
the $\sigma^{\prime} \mathrm{s}$ and the $\mathrm{a}^{\prime} \mathrm{s}$
are essentially equivalent
\&
the distinction between the $\sigma^{\prime} \mathrm{s}$ and the $\mathrm{a}^{\prime} \mathrm{s}$
is a slight notational difference
but this notational change
will make certain expressions / formulas easier
to view \& handle ito of the a' s rather than the σ ' s

GG68-36
\square the preceding several pages
may be paraphrased by stating that for a polynomial equation in one variable that factors completely (as always the case in the complex field), the coefficients are equal to the alternatingly signed elementary symmetric functions of the roots times
the leading coefficient

GG68-37
\square the following determinant expresses the a's ito the s's
$a_{k}=\frac{(-1)^{k}}{k!} a_{0}\left|\begin{array}{cccccc}s_{1} & 1 & 0 & 0 & 0 & \cdots \\ s_{2} & s_{1} & 2 & 0 & 0 & \cdots \\ s_{3} & s_{2} & s_{1} & 3 & 0 & \cdots\end{array}\right|$
wh $\mathrm{k} \in \operatorname{int} \& 1 \leq \mathrm{k} \leq \mathrm{n}$
\square the following determinant expresses the s's ito the a's
$s_{k}=\frac{(-1)^{k}}{a_{0}{ }^{k}}\left|\begin{array}{cccccc}a_{1} & a_{0} & 0 & 0 & 0 & \cdots \\ 2 a_{2} & a_{1} & a_{0} & 0 & 0 & \cdots \\ 3 a_{3} & a_{2} & a_{1} & a_{0} & 0 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ k a_{k} & a_{k-1} & \cdots & \cdots & \cdots & a_{1}\end{array}\right|$
wh $\mathrm{k} \in \operatorname{int} \& 1 \leq \mathrm{k} \leq \mathrm{n}$

T. Newton' s identities (first form)

$$
\begin{aligned}
& \text { - } \sum_{\mathrm{i}=0}^{\mathrm{k}-1}(-1)^{\mathrm{i}} \sigma_{\mathrm{i}} \mathrm{~s}_{\mathrm{k}-\mathrm{i}}+(-1)^{\mathrm{k}} \mathrm{k} \sigma_{\mathrm{k}}=0 \\
& \text { wh } \mathrm{k} \in \text { int } \& \quad 1 \leq \mathrm{k} \leq \mathrm{n}
\end{aligned}
$$

$$
\cdot \sum_{\mathrm{i}=0}^{\mathrm{n}}(-1)^{\mathrm{i}} \sigma_{\mathrm{i}} \mathrm{~s}_{\mathrm{k}-\mathrm{i}}=0
$$

$$
\text { wh } \mathrm{k} \in \text { int } \& \mathrm{k} \geq \mathrm{n}
$$

ion

- $\sigma_{0} \mathrm{~s}_{\mathrm{k}}-\sigma_{1} \mathrm{~s}_{\mathrm{k}-1}+\cdots+(-1)^{\mathrm{k}-1} \sigma_{\mathrm{k}-1} \mathrm{~s}_{1}+(-1)^{\mathrm{k}} \mathrm{k} \sigma_{\mathrm{k}}=0$ wh $\mathrm{k} \in$ int $\& 1 \leq \mathrm{k} \leq \mathrm{n}$

$$
\begin{aligned}
& \text { - } \sigma_{0} \mathrm{~s}_{\mathrm{k}}-\sigma_{1} \mathrm{~s}_{\mathrm{k}-1}+\cdots+(-1)^{\mathrm{n}} \sigma_{\mathrm{n}} \mathrm{~s}_{\mathrm{k}-\mathrm{n}}=0 \\
& \text { wh } \mathrm{k} \in \operatorname{int} \& \mathrm{k} \geq \mathrm{n}
\end{aligned}
$$

GG68-41
inp
(n, k)
$(1,1) \quad \sigma_{0} \mathrm{~s}_{1}-\sigma_{1}=0$
$(2,1) \quad \sigma_{0} \mathrm{~s}_{1}-\sigma_{1}=0$
$(2,2) \quad \sigma_{0} s_{2}-\sigma_{1} s_{1}+2 \sigma_{2}=0$
$(3,1) \quad \sigma_{0} s_{1}-\sigma_{1}=0$
$(3,2) \quad \sigma_{0} s_{2}-\sigma_{1} s_{1}+2 \sigma_{2}=0$
$(3,3) \quad \sigma_{0} s_{3}-\sigma_{1} s_{2}+\sigma_{2} s_{1}-3 a \sigma_{3}=0$
etc

GG68-42
(n, k)
$(1,1) \quad \sigma_{0} \mathrm{~s}_{1}-\sigma_{1} \mathrm{~s}_{0}=0$
$(1,2) \quad \sigma_{0} s_{2}-\sigma_{1} s_{1}=0$
$(1,3) \quad \sigma_{0} \mathrm{~s}_{3}-\sigma_{1} \mathrm{~s}_{2}=0$
etc
$(2,2) \quad \sigma_{0} \mathrm{~s}_{2}-\sigma_{1} \mathrm{~s}_{1}+\sigma_{2} \mathrm{~s}_{0}=0$
$(2,3) \quad \sigma_{0} s_{3}-\sigma_{1} s_{2}+\sigma_{2} s_{1}=0$
$(2,4) \quad \sigma_{0} s_{4}-\sigma_{1} s_{3}+\sigma_{2} s_{2}=0$ etc
$(3,3) \quad \sigma_{0} s_{3}-\sigma_{1} s_{2}+\sigma_{2} s_{1}-\sigma_{3} s_{0}=0$
$(3,4) \quad \sigma_{0} s_{4}-\sigma_{1} s_{3}+\sigma_{2} s_{2}-\sigma_{3} s_{1}=0$
$(3,5) \quad \sigma_{0} s_{5}-\sigma_{1} s_{4}+\sigma_{2} s_{3}-\sigma_{3} s_{2}=0$
etc
etc

T. Newton' s identities (second form)

$$
\begin{aligned}
& \text { • } \sum_{\mathrm{i}=0}^{\mathrm{k}-1} \mathrm{a}_{\mathrm{i}} \mathrm{~s}_{\mathrm{k}-\mathrm{i}}+\mathrm{k} \mathrm{a}_{\mathrm{k}}=0 \\
& \text { wh } \mathrm{k} \in \text { int } \& \quad 1 \leq \mathrm{k} \leq \mathrm{n}
\end{aligned}
$$

$$
\cdot \sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \mathrm{~s}_{\mathrm{k}-\mathrm{i}}=0
$$

$$
\text { wh } \mathrm{k} \in \text { int } \& \mathrm{k} \geq \mathrm{n}
$$

ion

$\bullet \mathrm{a}_{0} \mathrm{~s}_{\mathrm{k}}+\mathrm{a}_{1} \mathrm{~s}_{\mathrm{k}-1}+\cdots+\mathrm{a}_{\mathrm{k}-1} \mathrm{~s}_{1}+\mathrm{ka} \mathrm{k}_{\mathrm{k}}=0$
wh $\mathrm{k} \in$ int $\& 1 \leq \mathrm{k} \leq \mathrm{n}$

- $\mathrm{a}_{0} \mathrm{~s}_{\mathrm{k}}+\mathrm{a}_{1} \mathrm{~s}_{\mathrm{k}-1}+\cdots+\mathrm{a}_{\mathrm{n}} \mathrm{s}_{\mathrm{k}-\mathrm{n}}=0$ wh $\mathrm{k} \in$ int $\& \mathrm{k} \geq \mathrm{n}$

GG68-45
inp
(n, k)
$(1,1) \quad a_{0} s_{1}+a_{1}=0$
$(2,1) \quad a_{0} s_{1}+a_{1}=0$
$(2,2) \quad a_{0} s_{2}+a_{1} s_{1}+2 a_{2}=0$
$(3,1) \quad a_{0} s_{1}+a_{1}=0$
$(3,2) \quad a_{0} s_{2}+a_{1} s_{1}+2 a_{2}=0$
$(3,3) \quad a_{0} s_{3}+a_{1} s_{2}+a_{2} s_{1}+3 a_{3}=0$
etc

GG68-46
(n, k)
$(1,1) a_{0} s_{1}+a_{1} s_{0}=0$
$(1,2) a_{0} s_{2}+a_{1} s_{1}=0$
$(1,3) a_{0} s_{3}+a_{1} s_{2}=0$
etc
$(2,2) a_{0} s_{2}+a_{1} s_{1}+a_{2} s_{0}=0$
$(2,3) \quad a_{0} s_{3}+a_{1} s_{2}+a_{2} s_{1}=0$
$(2,4) \quad a_{0} s_{4}+a_{1} s_{3}+a_{2} s_{2}=0$ etc
$(3,3) \quad a_{0} s_{3}+a_{1} s_{2}+a_{2} s_{1}+a_{3} s_{0}=0$
$(3,4) a_{0} s_{4}+a_{1} s_{3}+a_{2} s_{2}+a_{3} s_{1}=0$
$(3,5) a_{0} s_{5}+a_{1} s_{4}+a_{2} s_{3}+a_{3} s_{2}=0$
etc
etc
\square Newton's identities relate the σ 's \& the a's on the one hand with
the s's on the other;
thus there are two forms of Newton's identities;
one form consists of $\sigma^{\prime} \mathrm{s} \& \mathrm{~s}^{\prime} \mathrm{s}$ together and
the other form consists a's \& s' s together;
each form is a sequence of formulas
depending on a pos int var k;
each form is expressed by two equations
because there is a change
in the structure of the first equation that affects the last term
when the parameter $k \in$ pos int var changes in possible value from weakly less than n to weakly greater than n ;

GG68-48
the situation of two equations for each form
is brought about
at least partly because
there are only finitely many σ ' $\& a^{\prime} s$
but there are infinitely many s's;
the two forms are thoroughly equivalent
since they are only slight notational variants of each other;
because the second form does not contain
the powers of -1 and the minus signs
that the first form contains,
the second form is
more compact and neater in appearance

GG68-49
\square the first equation of the second form of Newton's identities is expressible as a matrix equation as follows:

$$
\left[\begin{array}{llllll}
1 & & & & \\
s_{1} & 2 & & & \\
s_{2} & s_{1} & 3 & & \\
s_{3} & s_{2} & s_{1} & 4 & \\
\vdots & & & & \\
s_{n-1} & s_{n-2} & \cdots & s_{1} & n
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
\vdots \\
a_{n}
\end{array}\right]=-a_{0}\left[\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
\vdots \\
\vdots \\
s_{n}
\end{array}\right]
$$

\square the second equation of the second form of Newton's identities may be thought of as a sequence of the inner product of two vectors viz

D. a function $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)$
of the n independent variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ and
which takes values in an additive group say
is said to be
alternating
provided that
the value of the function ' changes sign'
(ie changes to the negation)
under the transposition of every pair of variables

GG68-52

eg

- $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in$ alt
\Leftrightarrow
$\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=-\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)$ for all $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{C}$
- $\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \in$ alt
\Leftrightarrow

$$
\begin{aligned}
& f\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \\
=- & \mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{3}, \mathrm{x}_{2}\right) \\
=- & -\mathrm{f}\left(\mathrm{x}_{3}, \mathrm{x}_{2}, \mathrm{x}_{1}\right) \\
= & -\mathrm{f}\left(\mathrm{x}_{2}, \mathrm{x}_{1}, \mathrm{x}_{3}\right)
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathbb{C}$ and hence also

$$
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}\right) \\
= & -f\left(x_{1}, x_{3}, x_{2}\right) \\
= & -f\left(x_{3}, x_{2}, x_{1}\right) \\
= & -f\left(x_{2}, x_{1}, x_{3}\right) \\
= & f\left(x_{2}, x_{3}, x_{1}\right) \\
= & f\left(x_{3}, x_{1}, x_{2}\right)
\end{aligned}
$$

for all $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3} \in \mathbb{C}$
GG68-53

D. the primitive alternating function / polynomial

- the primitive alternating function / polynomial of degree $n \geq 2$
for / in / of / on $x_{1}, x_{2}, \cdots, x_{n}$
$={ }_{d n} A\left(x_{1}, x_{2}, \cdots, x_{n}\right)$
$={ }_{a b}$ A
$=_{\mathrm{df}}$ the polynomial of degree n in $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$ which is the product of the differences $\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}$

$$
\begin{aligned}
& \text { of all }\binom{n}{2} \text { pairs } x_{i}, x_{j}(i<j \text { wh } i, j \in \underline{n}) \\
& =\prod_{\substack{i, j \in \underline{n} \\
i<j}}\left(x_{i}-x_{j}\right)
\end{aligned}
$$

\square examples

- $\mathrm{n}=2$
$\mathrm{A}=\mathrm{x}_{1}-\mathrm{x}_{2}$
- $\mathrm{n}=3$
$\mathrm{A}=\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)$
- $\mathrm{n}=4$

A
$=\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{3}\right)\left(\mathrm{x}_{1}-\mathrm{x}_{4}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{3}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{4}\right)\left(\mathrm{x}_{3}-\mathrm{x}_{4}\right)$

GG68-55
R. A is the simplest alternating polynomial in the x 's \& \therefore
the square A^{2} of A is a symmetric polynomial in the $x^{\prime} s$; hence A^{2} is expressible
as a polynomial in the $\sigma^{\prime} \mathrm{s}$;
but a σ is plus - or - minus an a over a_{0}
so that A^{2} is expressible as a polynomial
in the $\mathrm{a}^{\prime} \mathrm{s}$ over a_{0};
this latter form of A^{2}
(with a factor to get rid of any denominator involving a_{0})
is taken to be the discriminant
of the polynomial $\mathrm{P}(\mathrm{x})$
and
of the polynomial equation $\mathrm{P}(\mathrm{x})=0$,
the discriminant becoming a polynomial
in the coefficients of $\mathrm{P}(\mathrm{x})$ viz the $\mathrm{a}^{\prime} \mathrm{s}$
\square the discriminant Δ
of the polynomial $\mathrm{P}(\mathrm{x})$
and
of the polynomial equation $\mathrm{P}(\mathrm{x})=0$
is defined to be
the product of
$a_{0}{ }^{2 n-2}$
\&

$$
A^{2}=\prod_{\substack{i, j \in \mathfrak{n} \\ i<j}}\left(x_{i}-x_{j}\right)^{2}
$$

whence

$$
\Delta=a_{0}{ }^{2 n-2} A^{2}=a_{0}{ }_{\substack{n-j \in \underline{n} \\ i<j}}\left(x_{i}-x_{j}\right)^{2}
$$

\square formulas for the discriminant

$$
\Delta=a_{0}{ }^{2 n-2} \prod_{\substack{i, j \in \underline{n} \\ i<j}}\left(x_{i}-x_{j}\right)^{2}
$$

$$
=a_{0}{ }^{2 n-2}\left|\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & x_{3} & \cdots & x_{n} \\
x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & \cdots & x_{n}^{2} \\
\cdots \cdots \cdots & \cdots \cdots \cdots \cdots \cdots \cdots & \cdots & \cdots & \cdots \\
x_{1}^{n-1} & x_{2}^{n-1} & x_{3}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right|
$$

$$
=a_{0}^{2 n-2}\left|\begin{array}{lllll}
s_{0} & s_{1} & s_{2} & \cdots & s_{n-1} \\
s_{1} & s_{2} & s_{3} & \cdots & s_{n} \\
s_{2} & s_{3} & s_{4} & \cdots & s_{n+1} \\
\cdots & \ldots & \cdots & \cdots & \cdots
\end{array}\right|
$$

$$
=(-1)^{\frac{\mathrm{n}(\mathrm{n}-1)}{2}} \frac{1}{\mathrm{a}_{0}} \mathrm{R}\left(\mathrm{P}, \mathrm{P}^{\prime}\right)
$$

wh $R\left(P, P^{\prime}\right)$ is the resultant
of $\mathrm{P}(\mathrm{x})$ and its derivative $\mathrm{P}^{\prime}(\mathrm{x})$;
the discriminant Δ is a symmetric function
of the roots $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$
and effectively
the square of their primitive alternating function; the discriminant vanishes
iff
the equation $\mathrm{P}(\mathrm{x})=0$
has at least one multiple root;
the determinant on the x ' s above
is called
the Vandermonde determinant
$\mathrm{V}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}\right)$
of $\mathrm{x}_{1}, \mathrm{x}_{2}, \cdots, \mathrm{x}_{\mathrm{n}}$;
it is a desideratum that the discriminant be
a polynomial in the coefficients;
it turns out that the discriminant is
a homogeneous polynomial in the coefficients
of degree $2 n-2$
\square the capital Greek letter delta Δ
may have been chosen
to denote the discriminant
because
d is the initial letter of both
the word 'discriminant' \& the word 'difference', the discriminant being a product of differences, and because the Latin / English letter dee D d is the phonetic equivalent and the transliteration of the Greek letter delta $\Delta \delta$
\square the discriminant of the quadratic equation $a x^{2}+b x+c=0 \quad(a \neq 0)$ over the complex number field is
$\Delta=b^{2}-4 \mathrm{ac}$
note: the discriminant Δ
is the radicand
in the quadratic formula
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
for the roots of the quadratic equation

GG68-61
\square the discriminant of the cubic equation
$a x^{3}+b x^{2}+c x+d=0 \quad(a \neq 0)$
over the complex number field
is
$\Delta=\mathrm{b}^{2} \mathrm{c}^{2}+18 \mathrm{abcd}-4 \mathrm{ac}^{3}-4 \mathrm{~b}^{3} \mathrm{~d}-27 \mathrm{a}^{2} \mathrm{~d}^{2}$
note: to see how this expression is related to
Cardano' s solution of the cubic equation, see below
\square Cardano's formula for solving the cubic
the three roots of the cubic equation
$a x^{3}+b x^{2}+c x+d=0 \quad(a \neq 0)$
over the complex number field
are
$\mathrm{x}=\mathrm{u}+\mathrm{v}$
wh
$u=\sqrt[3]{-\frac{q}{2}+\sqrt{\left(\frac{\mathrm{p}}{3}\right)^{3}+\left(\frac{\mathrm{q}}{2}\right)^{2}}}$
\&
$\mathrm{v}=\sqrt[3]{-\frac{\mathrm{q}}{2}-\sqrt{\left(\frac{\mathrm{p}}{3}\right)^{3}+\left(\frac{\mathrm{q}}{2}\right)^{2}}}$
\&
the cube roots are chosen so that
their product is $-\frac{\mathrm{p}}{3}$
\&
(continued next page)

GG68-63

$$
\begin{aligned}
& \mathrm{p}=-\frac{\mathrm{r}^{2}}{3}+\mathrm{s} \\
& \mathrm{q}=\frac{2 \mathrm{r}^{3}}{27}-\frac{\mathrm{rs}}{3}+\mathrm{t} \\
& \mathrm{r}=\frac{\mathrm{b}}{\mathrm{a}} \\
& \mathrm{~s}=\frac{\mathrm{c}}{\mathrm{a}} \\
& \mathrm{t}=\frac{\mathrm{d}}{\mathrm{a}}
\end{aligned}
$$

GG68-64
note: in the Cardano formula the radicand
$D=\left(\frac{p}{3}\right)^{3}+\left(\frac{q}{2}\right)^{2}=\frac{p^{3}}{27}+\frac{q^{2}}{4}$
appears twice under a square root sign
and \sqrt{D} appears twice under a cube root sign; now

D
$=\frac{\mathrm{p}^{3}}{27}+\frac{\mathrm{q}^{2}}{4}$
$=-\frac{1}{108}\left(\mathrm{r}^{2} \mathrm{~s}^{2}+18 \mathrm{rst}-4 \mathrm{~s}^{3}-4 \mathrm{r}^{3} \mathrm{t}-27 \mathrm{t}^{2}\right)$
$=-\frac{1}{108 a^{4}}\left(b^{2} c^{2}+18 a b c d-4 a c^{3}-4 b^{3} d-27 a^{2} d^{2}\right)$
$=-\frac{1}{108 \mathrm{a}^{4}} \Delta$
observe that
$108=4 \times 27=2^{2} \times 3^{3}$
is the common denominator of the original form of D
\square the discriminant Δ of the quartic equation
$a x^{4}+b x^{3}+c x^{2}+d x+e=0 \quad(a \neq 0)$
over the complex number field
is given by the expansion
of the seventh order determinant
$\left|\begin{array}{ccccccc}1 & \mathrm{~b} & \mathrm{c} & \mathrm{d} & \mathrm{e} & 0 & 0 \\ 0 & \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} & 0 \\ 0 & 0 & \mathrm{a} & \mathrm{b} & \mathrm{c} & \mathrm{d} & \mathrm{e} \\ 4 & 3 \mathrm{~b} & 2 \mathrm{c} & \mathrm{d} & 0 & 0 & 0 \\ 0 & 4 \mathrm{a} & 3 \mathrm{~b} & 2 \mathrm{c} & \mathrm{d} & 0 & 0 \\ 0 & 0 & 4 \mathrm{a} & 3 \mathrm{~b} & 2 \mathrm{c} & \mathrm{d} & 0 \\ 0 & 0 & 0 & 4 \mathrm{a} & 3 \mathrm{~b} & 2 \mathrm{c} & \mathrm{d}\end{array}\right|$
\square bioline
Girolamo Cardano (Italian form of name)
Jerome Cardan (English / French form of name)
Hieronymus Cardanus (Latin form of name)
1501-1576
Italian
mathematician, astrologer, astronomer,
philosopher, physician, physicist

