Repunits

\#67 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG67-1 (10)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG67-2
D. repunits
let

- $\mathrm{n} \in \operatorname{pos}$ int then
- the repunit for / of / with index n
$=$ the nth repunit
$={ }_{\mathrm{dn}} \mathrm{R}_{\mathrm{n}}=\mathrm{R}(\mathrm{n})=\mathrm{Rn}$
$={ }_{\mathrm{df}} \frac{10^{\mathrm{n}}-1}{10-1}=\frac{10^{\mathrm{n}}-1}{9}$
$=$ the number whose base 10 numeral consists of n consecutive unit digits
$=\mathrm{n}$ one' s
= n 1's
$=111 \cdots 111$ (n digits)
\& \therefore
$\mathrm{R}_{1}=1$
$\mathrm{R}_{2}=11$
$\mathrm{R}_{3}=111$
$\mathrm{R}_{4}=1111$
$\mathrm{R}_{5}=11111$
$\mathrm{R}_{6}=111111$
etc
GG67-3

N . origin of notation

- repunit \leftarrow repeated unit
- $\mathrm{R}_{\mathrm{n}}=\mathrm{R}(\mathrm{n}) \leftarrow$ repunit of index $\underline{\mathrm{n}}$

GG67-4
\square prime factorizations of repunits $\mathrm{R}(\mathrm{n})$ for $1 \leq \mathrm{n} \leq 16$

- $\mathrm{R}(1)=1$ (pf)
- $\mathrm{R}(2)=11(\mathrm{pf})$
- $\mathrm{R}(3)=3 \times 37$ (pf)
- $R(4)=11 \times 101$ (pf)
- $R(5)=41 \times 271(p f)$
- $\mathrm{R}(6)=3 \times 7 \times 11 \times 13 \times 37$ (pf)
- $R(7)=239 \times 4649(p f)$
- $R(8)=11 \times 73 \times 101 \times 137$ (pf)
- $\mathrm{R}(9)=3^{2} \times 37 \times 333667(\mathrm{pf})$
- $\mathrm{R}(10)=11 \times 41 \times 271 \times 9091(\mathrm{pf})$
- $R(11)=21649 \times 513239(p f)$
- $\mathrm{R}(12)=3 \times 7 \times 11 \times 13 \times 37 \times 101 \times 9901(\mathrm{pf})$
- $\mathrm{R}(13)=53 \times 79 \times 265371653(\mathrm{pf})$
- $R(14)=11 \times 239 \times 4649 \times 909091(p f)$
- $\mathrm{R}(15)=3 \times 31 \times 37 \times 41 \times 271 \times 2906161(\mathrm{pf})$
- $\mathrm{R}(16)=11 \times 17 \times 73 \times 101 \times 137 \times 5882352(\mathrm{pf})$
- the complete prime factorizations of the repunits $\mathrm{R}(\mathrm{n})$ for $1 \leq \mathrm{n}<236$ are known (2001) with 4 exceptions: $\mathrm{n}=197,223,227,233$
R. a systematic ' algebraic type' factoring of $R(n)$ for composite plural integers n may be illustrated by
the following example for $\mathrm{n}=12$
whose plural proper factors are $2,3,4,6$:
R(12)
$=11 \times 10101010101$
$=111 \times 1001001001$
$=1111 \times 100010001$
$=111111 \times 1000001$
T. let
- $\mathrm{m}, \mathrm{n} \in \operatorname{posint}$ then
- m divides $\mathrm{n} \Rightarrow \mathrm{R}(\mathrm{m})$ divides $\mathrm{R}(\mathrm{n})$
- $R(m) \& R(n)$ divide $R(m n)$
- $\mathrm{R}(\mathrm{m})$ and $\mathrm{R}(\mathrm{n})$ are coprime $\Leftrightarrow \mathrm{m}$ and n are coprime
- n is composite $\Rightarrow R(n)$ is composite; the converse fails
- $\mathrm{R}(\mathrm{n})$ is prime $\Rightarrow \mathrm{n}$ is prime; the converse fails

GG57-7
R. divisibility properties of repunits

- every repunit whose index is divisible by 2 has 11 as a prime factor
- every repunit whose index is divisible by 3 has $3 \& 37$ as prime factors
- every repunit whose index is divisible by 4 has $11 \& 101$ as prime factors
- every repunit whose index is divisible by 5 has $41 \& 271$ as prime factors
- every repunit whose index is divisible by 6 has $3 \& 7 \& 11 \& 13 \& 37$ as prime factors etc
\square the known prime repunits
- $\mathrm{R}(2) \quad=$ the 1st prime repunit
- $\mathrm{R}(19)=$ the 2nd prime repunit
- $\mathrm{R}(23)=$ the 3rd prime repunit
- $\mathrm{R}(317)=$ the 4th prime repunit
- $R(1031)=$ the 5 th prime repunit \& the largest known (2001) prime repunit
- there are no other prime repunits $\mathrm{R}(\mathrm{n})$ for $1 \leq \mathrm{n} \leq 45,000$
- $R(49081)$ is a probable prime
- $\mathrm{R}(86453)$ is a probable prime
- it is not known (2001) whether there are infinitely many prime repunits

GG67-9
C. repunits to base 10
may be generalized to
repunits to base b
where b is any plural integer;
the repunit
of positive integer index n to base b
$={ }_{d f} \frac{b^{n}-1}{b-1}$;
note that
the repunit of index n to base 2
is the Mersenne number
$M_{n}=2^{n}-1$

GG67-10

