Intro Info on Regular Polygons

\#65 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG65-1 (61)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG65-2
\square all considerations take place in the euclidean plane
D. a polygon
$=_{d f}$ an ordered pair (V, P)
where
V is a cyclic sequence
of n distinct points of the euclidean plane
with n an integer at least 3
\&
P is the subset of the euclidean plane
which is
the union of the n line segments
connecting the n adjacent point pairs of V ,

GG65-3

V being called
the vertex cycle of the polygon (V, P)
\&
the n points of V being called
the vertices of the polygon (V, P)
\&
P being called
the perimeter of the polygon (V, P)
\&
the n line segments connecting
the adjacent point pairs of V being called
the sides of the polygon (V, P)
\&
n being called
the vertex - number / side - number / order of the polygon (V, P)
note: altho P is uniquely determined by V in a polygon (V, P),
in most cases considered P uniquely determines V
$\& \mathrm{P}$ is thought of as the polygon
D. an n - gon
wh $n \in$ int ≥ 3
$={ }_{d f}$ a polygon with exactly n vertices
$=$ an $n-$ vertex polygon
$=\mathrm{a}$ polygon with exactly n sides
$=$ an n-sided polygon

GG65-5
D. diagonals of polygons

- a diagonal of a polygon
$={ }_{\mathrm{df}}$ a line segment joining
two nonadjacent vertices of the polygon
- a k - diagonal of an n - gon
wh $n, k \in$ int st
$\mathrm{n} \geq 3$ \& $2 \leq \mathrm{k} \leq \mathrm{n}-2$
$=_{\mathrm{df}}$ a diagonal of the n - gon
whose endpoints have
$\mathrm{k}-1$ consecutive vertices of the n - gon
strictly inbetween them
or equivalently
which spans k consecutive sides of the polygon

GG65-6
D. basic properties of polygons
let

- $(\mathrm{V}, \mathrm{P}) \in$ polygon
then
- $(\mathrm{V}, \mathrm{P}) \in$ simple
$={ }_{\text {df }}$ each pair of adjacent sides intersects exactly in their common endpoint \&
each pair of nonadjacent sides is disjoint
$=\mathrm{P} \in$ simple closed curve
- $(\mathrm{V}, \mathrm{P}) \in$ convex
$={ }_{\mathrm{df}}(\mathrm{V}, \mathrm{P}) \in$ simple $\& \operatorname{int} \mathrm{P} \in$ convex
- $(\mathrm{V}, \mathrm{P}) \in$ concave
$={ }_{\mathrm{df}}(\mathrm{V}, \mathrm{P}) \in$ simple $\& \operatorname{int} \mathrm{P} \notin$ convex
- $(\mathrm{V}, \mathrm{P}) \in$ proper
$={ }_{d f}$ no two adjacent sides of (V, P) are collinear
$=$ no three consecutive vertices of (V, P) are collinear
- $(\mathrm{V}, \mathrm{P}) \in$ prosimple
$={ }_{\mathrm{df}}(\mathrm{V}, \mathrm{P}) \in$ proper $\&$ simple
wh
prosimple $\leftarrow \underline{\text { proper }+ \text { simple }}$
- $(\mathrm{V}, \mathrm{P}) \in$ proconvex
$=_{\mathrm{df}}(\mathrm{V}, \mathrm{P}) \in$ proper $\&$ convex
wh
proconvex $\leftarrow \underline{\text { proper }}+$ convex
- $(\mathrm{V}, \mathrm{P}) \in$ proconcave
$={ }_{\mathrm{df}}(\mathrm{V}, \mathrm{P}) \in$ proper $\&$ concave
wh
proconcave \leftarrow proper + concave

GG65-8
D. the area of a simple polygon (V, P)
$={ }_{\mathrm{df}}$ the area of int P
C. we may think of
a proconvex $n-$ gon $(n \in \operatorname{int} \geq 3)$ variously and equivalently
in three ways as:

- the 0 - dimensional set of its n vertices
- the 1 -dimensional union of its n sides
- the 2 - dimensional convex hull of either of the above sets, the hull being described as a closed polygonal plate
D. associated angles of simple polygons
let
- $(\mathrm{V}, \mathrm{P}) \in$ simple polygon
- $\mathrm{A} \in$ vertex of (V, P)
then
- the interior angle of (V, P) at A
$=$ the angle of (V, P) at A
$={ }_{\mathrm{df}}$ the sectorial angle
with vertex A
whose sides are the extended sides
of the polygon (V, P)
issuing from A ,
both proximally,
\&
which intersects int P locally at A ;
a simple $n-$ gon $(n \in \operatorname{int} \geq 3)$
has exactly n interior angles,
one at each vertex

GG65-10

- the external angle of (V, P) at A
$={ }_{\mathrm{df}}$ the sectorial angle
with vertex A
whose sides are the extended sides
of the polygon (V, P)
issuing from A ,
both proximally,
\&
which does not intersect int P locally at A ;
a simple $n-$ gon $(n \in \operatorname{int} \geq 3)$
has exactly n external angles, one at each vertex

GG65-11
D. exterior angles of a simple convex polygon let

- $(\mathrm{V}, \mathrm{P}) \in$ simple convex polygon
- $\mathrm{A} \in$ vertex of (V, P)
then
- an exterior angle of (V, P) at A
$={ }_{\mathrm{df}}$ one of the two sectorial angles
with vertex A
whose sides are the extended sides
of the polygon (V, P)
issuing from A ,
one proximally and one distally,
\&
which do not intersect int P locally at A ;
a simple convex n-gon $(n \in \operatorname{int} \geq 3)$
has exactly 2 n exterior angles, two at each vertex

GG65-12
D. properties of angles of simple polygons let

- $(\mathrm{V}, \mathrm{P}) \in$ simple polygon
then
- an interior angle of (V, P)
$={ }_{\mathrm{df}}$ salient or flat or re - entrant according as the interior angle is
strictly less than
Or
equal to
or
strictly greater than
a straight angle of 180°

GG65-13

N . frequently useful notation
for the cycliclly ordered vertices of a polygon
\square capital English letters in alphabetic order

- A,B,C for a triangle
- A, B,C,D for a quadrilateral
- A,B,C,D,E for a pentagon etc
\square A with consecutive integer subscripts starting with 1
- $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, \cdots, \mathrm{~A}_{\mathrm{n}}$ for an n - gon
wh $n \in$ int ≥ 3

GG65-14
D. kinds of polygons

- an equilateral polygon
$={ }_{\mathrm{df}}$ a polygon st
all sides of the polygon are equal
ie
have the same length
- an equiangular polygon
$={ }_{\mathrm{df}}$ a simple polygon st
all interior angles of the polygon are equal
ie
have the same measure
- a regular polygon
$=_{\mathrm{df}}$ an equilateral equiangular polygon

GG65-15

- a cyclic polygon
$=_{\mathrm{df}}$ a polygon whose vertices
all lie on a necessarily unique circle
called
the circumscribed circle of the polygon
or more briefly
the circumcircle of the polygon,
the center of the circumcircle
being called
the circumcenter of the polygon
or more briefly
the center of the polygon
\&
a / the radius of the circumcircle being called
a / the circumradius of the polygon or more briefly
a / the radius of the polygon \&
a / the diameter of the circumcircle being called
a / the circumdiameter of the polygon
- a gyric polygon
$={ }_{\mathrm{df}}$ a convex polygon st
all sides are internally tangent to
a necessarily unique circle
called
the inscribed circle of the polygon or more briefly the incircle of the polygon, the center of the incircle being called the incenter of the polygon \&
an / the radius of the incircle being called an / the inradius of the polygon \&
an / the diameter of the incircle being called an / the indiameter of the polygon
R. the regular polygons are
equilateral
equiangular
cyclic
gyric
and
the most symmetric of all polygons;
for a given $\mathrm{n} \in$ int ≥ 3
all regular n - gons are similar and \therefore
one may sometimes speak of the regular $n-$ gon

GG65-18
D. a symmetry of a geometric object
$={ }_{\mathrm{df}}$ a one - to - one transformation of the object onto itself that is isometric ie distance - preserving; thus the notion of a symmetry of a regular polygon is defined uniquely whether we think of the polygon as the corners or the frame or the plate
R. symmetries for a regular polygon

- the center of rotational symmetry of a regular polygon
$=$ the center $=$ the circumcenter $=$ the incenter
wi also the center of reflective symmetry
if the order is even
- the n axes of reflective symmetry
of a regular $n-$ gon $(n \in \operatorname{int} \geq 3)$ are:
for odd n , the n circumdiameters thru a vertex which coincide with
the n perpendicular bisectors of the sides;
for even n, the $n / 2$ circumdiameters thru opposite vertex pairs
and the $\mathrm{n} / 2$ perpendicular bisectors of pairs of opposite parallel sides;

GG65-19

D. dihedral groups

- the nth dihedral group wh $n \in$ int ≥ 3
$={ }_{\mathrm{dn}} \Delta_{\mathrm{n}}$
$={ }_{\mathrm{df}}$ the group of symmetries
of the regular polygon P_{n}
$=$ the symmetry group of P_{n}
$=$ the group of order 2 n generated by
the rotation R of P_{n} thru $360^{\circ} / n$
about the center of P_{n}
and
the reflection F of P_{n} in a line thru a vertex of P and the center of P_{n} viz
$1, \mathrm{R}, \mathrm{R}^{2}, \cdots, \mathrm{R}^{\mathrm{n}-1}$,
$\mathrm{F}, \mathrm{RF}, \mathrm{R}^{2} \mathrm{~F}, \cdots, \mathrm{R}^{\mathrm{n}-1} \mathrm{~F}$
$=$ the group of order 2 n consisting of
the n rotational congruences $\&$ the n reflective congruences; a cyclic subgroup C_{n} of Δ_{n} of order n
consists of the n rotational congruences $1, \mathrm{R}, \mathrm{R}^{2}, \cdots, \mathrm{R}^{\mathrm{n}-1}$ GG65-20

D. notions for a regular polygon

- a spoke of the polygon
$={ }_{\mathrm{df}}$ a line segment joining
the center of the polygon $\&$ a vertex of the polygon
$=$ a circumradius of the polygon to a vertex of the polygon; a regular $n-$ gon $(n \in \operatorname{int} \geq 3)$ has exactly n spokes, one to a vertex
- a central triangle of the polygon
$=_{\mathrm{df}}$ a triangle whose sides are a side of the polygon $\&$ the two spokes to its endpoints; a regular $n-$ gon $(n \in \operatorname{int} \geq 3)$ has exactly n central triangles, one to a side of the polygon

GG65-21
N. notation for a regular polygon P_{n} of order n wh $n \in$ int ≥ 3

- $\mathrm{n}=$ the number of the vertices of the polygon
$=$ the vertex - number of the polygon
$=$ the number of the sides of the polygon
$=$ the side - number of the polygon
$=$ the number of the central / interior / external angles of the polygon
$=$ the angle - number of the polygon

GG65-22

- $\mathrm{a}=$ the length of a side of the polygon
$=$ the side - length of the polygon
$=$ the side of the polygon
- $\mathrm{d}_{\mathrm{k}} \quad$ wh $\mathrm{k} \in$ int st $2 \leq \mathrm{k} \leq \mathrm{n}-2$
$=$ the length of a diagonal of the polygon spanning k consecutive sides of the polygon
$=$ the k -diagonal-length of the polygon
$=$ the k -diagonal of the polygon
- $p=$ the perimeter of the polygon
$=$ the sum of the lengths of all sides of the polygon

GG65-23
$\mathrm{O}=$ the center of the circumcircle of the polygon
$=$ the circumcenter of the polygon
$=$ the center of the incircle of the polygon
$=$ the incenter of the polygon
$=$ the center of the polygon

- $\mathrm{R}=$ the radius of the circumcircle of the polygon
$=$ the circumradius of the polygon
$=$ the radius of the polygon
- $r=$ the radius of the incircle of the polygon
$=$ the inradius of the polygon
$=$ the apothem of the polygon
- $\mathrm{C}(\mathrm{O}, \mathrm{R})=$ the circle with center O and radius R
$=$ the circle passing thru
all vertices of the polygon
$=$ the circumscribing circle of the polygon
$=$ the circumcircle of the polygon
- $\mathrm{C}(\mathrm{O}, \mathrm{r})=$ the circle with center O and radius r
$=$ the circle tangent to
all sides of the polygon
$=$ the inscribed circle of the polygon
$=$ the incircle of the polygon

GG65-25

- $\alpha=$ the interior angle of the polygon
- $\beta=$ the exterior angle of the polygon
- $\gamma=$ the external angle of the polygon
- $\delta=$ the base angle of the polygon
$=$ the base angle of a central triangle of the polygon
- $\vartheta=$ the central angle of the polygon
$=$ the apex angle of a central triangle of the polygon
$=$ the sectorial angle
with vertex at the center of the polygon and subtended by a side of the polygon
$=$ the sectorial angle between two consecutive spokes of the polygon that is less than a straight angle

GG65-26
\square formulary for the regular n - sided polygon P_{n} wh $n \in$ int ≥ 3

- $\mathrm{a}=2 \tan \frac{\vartheta}{2} \mathrm{r}=2 \sin \frac{\vartheta}{2} \mathrm{R}=2 \sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}$
- $\mathrm{r}=\frac{1}{2} \cot \frac{\vartheta}{2} \mathrm{a}=\cos \frac{\vartheta}{2} \mathrm{R}=\frac{1}{2} \sqrt{4 \mathrm{R}^{2}-\mathrm{a}^{2}}$
- $\mathrm{R}=\frac{1}{2} \csc \frac{\vartheta}{2} \mathrm{a}=\sec \frac{\vartheta}{2} \mathrm{r}=\frac{1}{2} \sqrt{\mathrm{a}^{2}+4 \mathrm{r}^{2}}$
- $\mathrm{a}^{2}+4 \mathrm{r}^{2}=4 \mathrm{R}^{2}$
- $\mathrm{p}=\mathrm{na}=2 \mathrm{n} \tan \frac{\vartheta}{2} \mathrm{r}=2 \mathrm{n} \sin \frac{\vartheta}{2} \mathrm{R}=2 \mathrm{n} \sqrt{\mathrm{R}^{2}-\mathrm{r}^{2}}$

GG65-27

$$
\text { - } \mathrm{d}_{\mathrm{k}}=\mathrm{d}_{\mathrm{n}-\mathrm{k}} \quad \text { wh } \mathrm{k} \in \text { int st } 2 \leq \mathrm{k} \leq \mathrm{n}-2
$$

$$
\begin{aligned}
& =\sin \mathrm{k} \frac{\vartheta}{2} \csc \frac{\vartheta}{2} \mathrm{a} \\
& =2 \sin \mathrm{k} \frac{\vartheta}{2} \sec \frac{\vartheta}{2} \mathrm{r} \\
& =2 \sin \mathrm{k} \frac{\vartheta}{2} \mathrm{R}
\end{aligned}
$$

- the number of the diagonals of P_{n}
$=\frac{1}{2} \mathrm{n}(\mathrm{n}-3)$

GG65-28

- S

$$
=\frac{\mathrm{n}}{4} \cot \frac{\vartheta}{2} \mathrm{a}^{2}
$$

$$
=\mathrm{n} \tan \frac{\vartheta}{2} \mathrm{r}^{2}
$$

$$
=\frac{\mathrm{n}}{2} \sin \vartheta \mathrm{R}^{2}
$$

$$
=\frac{\mathrm{n}}{2} \mathrm{ar}
$$

GG65-29

- $\vartheta=\frac{1}{\mathrm{n}} 360^{\circ}=\frac{2}{\mathrm{n}} \pi^{\mathrm{r}}$
- $\alpha=\frac{\mathrm{n}-2}{2 \mathrm{n}} 360^{\circ}=\frac{\mathrm{n}-2}{\mathrm{n}} \pi^{\mathrm{r}}$
- $\beta=\frac{1}{\mathrm{n}} 360^{\circ}=\frac{2}{\mathrm{n}} \pi^{\mathrm{r}}$
- $\gamma=\frac{\mathrm{n}+2}{2 \mathrm{n}} 360^{\circ}=\frac{\mathrm{n}+2}{\mathrm{n}} \pi^{\mathrm{r}}$
- $\delta=\frac{\mathrm{n}-2}{4 \mathrm{n}} 360^{\circ}=\frac{\mathrm{n}-2}{2 \mathrm{n}} \pi^{\mathrm{r}}$
\square for any integer $\mathrm{n} \geq 3$
consider a regular $\mathrm{n}-$ gon P_{n}
with circumradius R;
the n midpoints of the side - spanned arcs
of the circumcircle of P_{n}
together with the n vertices of P_{n}
form the 2 n vertices of a regular $2 \mathrm{n}-$ gon $\mathrm{P}_{2 \mathrm{n}}$; the side a_{n} of P_{n}
\&
the side $\mathrm{a}_{2 \mathrm{n}}$ of $\mathrm{P}_{2 \mathrm{n}}$ are related by the formula
$a_{2 n}=\sqrt{2 R^{2}-R \sqrt{4 R^{2}-a_{n}{ }^{2}}}$

GG65-31
\square for a given circle with diameter d let

- $\mathrm{n} \in$ var ranging over the integers ≥ 3
- $\mathrm{I}_{\mathrm{n}}=$ the perimeter of the inscribed regular n - gon
- $\mathrm{C}_{\mathrm{n}}=$ the perimeter of the circumscribed regular n - gon
then
- $\mathrm{I}_{2 \mathrm{n}}=$ the geometric mean of I_{n} and $\mathrm{C}_{2 \mathrm{n}}$ ie

$$
\mathrm{I}_{2 \mathrm{n}}=\sqrt{\mathrm{I}_{\mathrm{n}} \mathrm{C}_{2 \mathrm{n}}}
$$

- $\mathrm{C}_{2 \mathrm{n}}=$ the harmonic mean of I_{n} and C_{n} ie

$$
\frac{1}{\mathrm{C}_{2 \mathrm{n}}}=\frac{1}{2}\left(\frac{1}{\mathrm{I}_{\mathrm{n}}}+\frac{1}{\mathrm{C}_{\mathrm{n}}}\right)
$$

GG65-32

- the classical polygonal method of calculating π is based on the limits
$\exists \lim _{\mathrm{n} \rightarrow \infty} \mathrm{I}_{\mathrm{n}}=$ circumference of circle $=\pi \mathrm{d}$
\&
$\exists \lim _{\mathrm{n} \rightarrow \infty} \mathrm{C}_{\mathrm{n}}=$ circumference of circle $=\pi \mathrm{d}$
\&
$\mathrm{I}_{3}<\mathrm{I}_{4}<\mathrm{I}_{5}<\cdots \rightarrow \pi \mathrm{d} \leftarrow \cdots<\mathrm{C}_{5}<\mathrm{C}_{4}<\mathrm{C}_{3}$
\square Gauss proved in 1796 at the age of nineteen that for an integer n greater than or equal to 3
the regular polygon of n sides is constructible by Platonic tools iff
n is representable as
the product of
a nonnegative integer power of 2 and
distinct Fermat primes
\square the Platonic tools
are
the unmarked straightedge
\&
the collapsible compasses
\square the nth Fermat number F_{n} where n is a nonnegative integer is defined to be 1 more than 2 to the 2 to the nth power viz
$\mathrm{F}_{\mathrm{n}}=2^{2^{\mathrm{n}}}+1$

GG65-34
\square the only known (2001) Fermat primes are the first five Fermat numbers
$\mathrm{F}_{0}=3$
$\mathrm{F}_{1}=5$
$\mathrm{F}_{2}=17$
$\mathrm{F}_{3}=257$
$\mathrm{F}_{4}=65537$
it is known that
$\mathrm{F}_{5}=4294967297$
is composite;
many other Fermat numbers are known to be composite; it is not known (2001) whether:

- all Fermat numbers F_{n} with index n at least 5 are composite
- there are infinitely many composite Fermat numbers
- there are infinitely many prime Fermat numbers

GG65-35
\square the Platonically constructible regular n-gons where n is less than or equal to 100
are given by
the following 24 values of n :
3, 4, 5, 6, 8 ,
$10,12,15,16,17$,
20, 24,
30, 32, 34,
40, 48,
54,
60, 64, 68,
80, 85,
96
\square Gauss calculated that

$$
\begin{aligned}
& \cos \frac{360^{\circ}}{17} \\
& = \\
& \frac{1}{16}(-1+\sqrt{17}+\sqrt{34-2 \sqrt{17}} \\
& \quad+2 \sqrt{17+3 \sqrt{17-2 \sqrt{34+2 \sqrt{17}}-\sqrt{34-2 \sqrt{17}}})}
\end{aligned}
$$

GG65-36
R. for any positive integer n

- the set of the nth roots of unity
$=$ the set of the n complex nth roots of unity
$=$ the set of the n roots of the nth degree complex polynomial equation
$z^{\mathrm{n}}=1$
wh $z \in$ complex variable
$=$ the set of the n complex numbers
$\exp \mathrm{k} \frac{2 \pi}{\mathrm{n}}=\cos \mathrm{k} \frac{2 \pi}{\mathrm{n}}+\mathrm{i} \sin \mathrm{k} \frac{2 \pi}{\mathrm{n}}$
wh $\mathrm{k} \in$ int $\mathrm{st} 0 \leq \mathrm{k} \leq \mathrm{n}-1$
- if $\mathrm{n} \geq 3$, then
the above set is the set of vertices
of a regular n - gon
with a vertex at 1 ,
with center at the origin, with radius 1 ,
with central angle $\frac{2 \pi}{n}=\frac{360^{\circ}}{n}$
GG65-37
\square for the equilateral triangle P_{3}
- $\mathrm{n}=3$
- $a=2 \sqrt{3} r=\sqrt{3} R$
- $r=\frac{\sqrt{3}}{6} a=\frac{1}{2} R$
- $R=\frac{\sqrt{3}}{3} a=2 r$
- $p=3 a=6 \sqrt{3} r=3 \sqrt{3} R$
- $S=\frac{\sqrt{3}}{4} a^{2}=3 \sqrt{3} r^{2}=\frac{3 \sqrt{3}}{4} R^{2}=\frac{3}{2} a r$

GG65-38

- $\vartheta=120^{\circ}=\frac{2 \pi^{\mathrm{r}}}{3}$
- $\alpha=60^{\circ}=\frac{\pi^{r}}{3}$
- $\beta=120^{\circ}=\frac{2 \pi^{r}}{3}$
- $\gamma=300^{\circ}=\frac{5 \pi^{r}}{3}$
- $\delta=30^{\circ}=\frac{\pi^{\mathrm{r}}}{6}$

GG65-39
\square for the square P_{4}

- $\mathrm{n}=4$
- $\mathrm{a}=2 \mathrm{r}=\sqrt{2} \mathrm{R}$
- $\mathrm{r}=\frac{1}{2} \mathrm{a}=\frac{\sqrt{2}}{2} \mathrm{R}$
- $R=\frac{\sqrt{2}}{2} a=\sqrt{2} r$
- $\mathrm{p}=4 \mathrm{a}=8 \mathrm{r}=4 \sqrt{2} \mathrm{R}$
- $\mathrm{d}=\mathrm{d}_{2}=\sqrt{2} \mathrm{a}=2 \sqrt{2} \mathrm{r}=2 \mathrm{R}$
- $\mathrm{d}: \mathrm{a}=\sqrt{2}$
$=$ the simplest irrational real number
- $\mathrm{S}=\mathrm{a}^{2}=4 \mathrm{r}^{2}=2 \mathrm{R}^{2}=2 \mathrm{ar}$

GG65-40

- $\vartheta=90^{\circ}=\frac{\pi^{r}}{2}$
- $\alpha=90^{\circ}=\frac{\pi^{r}}{2}$
- $\beta=90^{\circ}=\frac{\pi^{\mathrm{r}}}{2}$
- $\gamma=270^{\circ}=\frac{3 \pi^{\mathrm{r}}}{2}$
- $\delta=45^{\circ}=\frac{\pi^{\mathrm{r}}}{4}$

\square for the regular pentagon P_{5}
 - $\mathrm{n}=5$

- $\mathrm{a}=2 \sqrt{5-2 \sqrt{5}} \mathrm{r}=\frac{1}{2} \sqrt{10-2 \sqrt{5}} \mathrm{R}$
- $\mathrm{r}=\frac{1}{10} \sqrt{25+10 \sqrt{5}} \mathrm{a}=\frac{1}{4}(1+\sqrt{5}) \mathrm{R}$
- $\mathrm{R}=\frac{1}{10} \sqrt{50+10 \sqrt{5}} \mathrm{a}=(\sqrt{5}-1) \mathrm{r}$
- $p=5 a=10 \sqrt{5-2 \sqrt{5}} r=\frac{5}{2} \sqrt{10-2 \sqrt{5}} R$
- $\mathrm{d}=\mathrm{d}_{2}=\mathrm{d}_{3}$
$=\frac{1}{2}(1+\sqrt{5}) \mathrm{a}$
$=\sqrt{10-2 \sqrt{5}} \mathrm{r}$
$=\frac{1}{2} \sqrt{10+2 \sqrt{5}} \mathrm{R}$
GG65-42
- $\mathrm{d}: \mathrm{a}=\frac{1}{2}(1+\sqrt{5})$
$=1.4743357156+=\varphi=$ the golden ratio
- any two interiorly intersecting diagonals cut segments on each other that are in golden ratio
- S
$=\frac{1}{4} \sqrt{25+10 \sqrt{5}} \mathrm{a}^{2}$
$=5 \sqrt{5-2 \sqrt{5}} \mathrm{r}^{2}$
$=\frac{5}{8} \sqrt{10+2 \sqrt{5}} \mathrm{R}^{2}$
$=\frac{5}{2} \mathrm{ar}$
- $\vartheta=72^{\circ}=\frac{2 \pi^{r}}{5}$
- $\alpha=108^{0}=\frac{3 \pi^{r}}{5}$
- $\beta=72^{\circ}=\frac{3 \pi^{\mathrm{r}}}{5}$
- $\gamma=252^{\circ}=\frac{7 \pi^{\mathrm{r}}}{5}$
- $\delta=54^{\mathrm{o}}=\frac{3 \pi^{\mathrm{r}}}{10}$

GG65-44
\square for the regular hexagon P_{6}

- $\mathrm{n}=6$
- $\mathrm{a}=\frac{2 \sqrt{3}}{3} \mathrm{r}=\mathrm{R}$
- $r=\frac{\sqrt{3}}{2} a=\frac{\sqrt{3}}{2} R$
- $\mathrm{R}=\mathrm{a}=\frac{2 \sqrt{3}}{3} \mathrm{r}$
- $p=6 a=4 \sqrt{3} r=6 R$
- $\mathrm{d}_{2}=\mathrm{d}_{4}=\sqrt{3} \mathrm{a}=2 \mathrm{r}=\sqrt{3} \mathrm{R}$
- $\mathrm{d}_{3}=2 \mathrm{a}=\frac{4 \sqrt{3}}{3} \mathrm{r}=2 \mathrm{R}$
- $S=\frac{3 \sqrt{3}}{2} \mathrm{a}^{2}=2 \sqrt{3} \mathrm{r}^{2}=\frac{3 \sqrt{3}}{2} \mathrm{R}^{2}=3 \mathrm{ar}$

GG65-45

- $\vartheta=60^{\circ}=\frac{\pi^{\mathrm{r}}}{3}$
- $\alpha=120^{\circ}=\frac{2 \pi^{r}}{3}$
- $\beta=60^{\circ}=\frac{\pi^{r}}{3}$
- $\gamma=240^{\circ}=\frac{4 \pi^{\mathrm{r}}}{3}$
- $\delta=60^{\circ}=\frac{\pi^{\mathrm{r}}}{3}$

GG65-46

\square for the regular octagon P_{8}
 - $\mathrm{n}=8$

- $\mathrm{a}=2(\sqrt{2}-1) \mathrm{r}=\sqrt{2-\sqrt{2}} \mathrm{R}$
- $\mathrm{r}=\frac{1}{2}(1+\sqrt{2}) \mathrm{a}=\frac{1}{2} \sqrt{2+\sqrt{2}} \mathrm{R}$
- $\mathrm{R}=\frac{1}{2} \sqrt{4+2 \sqrt{2}} \mathrm{a}=\sqrt{4-2 \sqrt{2}} \mathrm{r}$
- $\mathrm{p}=8 \mathrm{a}=16(\sqrt{2}-1) \mathrm{r}=8 \sqrt{2-\sqrt{2}} \mathrm{R}$
- $\mathrm{d}_{2}=\mathrm{d}_{6}$
$=\sqrt{2+\sqrt{2}} \mathrm{a}=2 \sqrt{2-\sqrt{2}} \mathrm{r}=\sqrt{2} \mathrm{R}$
- $\mathrm{d}_{3}=\mathrm{d}_{5}$
$=(1+\sqrt{2}) \mathrm{a}=2 \mathrm{r}=\sqrt{2+\sqrt{2}} \mathrm{R}$
- d_{4}
$=\frac{1}{2} \sqrt{2+\sqrt{2}} \mathrm{a}=2 \sqrt{4-2 \sqrt{2}} \mathrm{r}=2 \mathrm{R}$
- S
$=2(1+\sqrt{2}) \mathrm{a}^{2}=8(\sqrt{2}-1) \mathrm{r}^{2}=2 \sqrt{2} \mathrm{R}^{2}=4 \mathrm{ar}$

GG65-48

- $\vartheta=45^{\circ}=\frac{\pi^{r}}{4}$
- $\alpha=135^{\circ}=\frac{3 \pi^{r}}{4}$
- $\beta=45^{\circ}=\frac{\pi^{r}}{4}$
- $\gamma=225^{\circ}=\frac{5 \pi^{\mathrm{r}}}{4}$
- $\delta=67^{\circ} 30^{\prime}=\frac{3 \pi^{r}}{8}$

GG65-49
\square for the regular decagon P_{10}

- $\mathrm{n}=10$
- $\mathrm{a}=\frac{2}{5} \sqrt{25-10 \sqrt{5}} \mathrm{r}=\frac{1}{2}(\sqrt{5}-1) \mathrm{R}$
- $r=\frac{1}{2} \sqrt{5+2 \sqrt{5}} \mathrm{a}=\frac{1}{4} \sqrt{10+2 \sqrt{5}} \mathrm{R}$
- $\mathrm{R}=\frac{1}{2}(1+\sqrt{5}) \mathrm{a}=\frac{1}{5} \sqrt{50-10 \sqrt{5}} \mathrm{r}$
- $\mathrm{p}=10 \mathrm{a}=4 \sqrt{25-10 \sqrt{5}} \mathrm{r}=5(\sqrt{5}-1) \mathrm{R}$
- $\mathrm{R}: \mathrm{a}=\frac{1}{2}(1+\sqrt{5})=\varphi=$ the golden ratio
- $\mathrm{d}_{2}=\mathrm{d}_{8}$
$=\frac{1}{2} \sqrt{10+2 \sqrt{5}} \mathrm{a}=\frac{1}{2}(\sqrt{5}-1) \mathrm{r}=\frac{1}{2} \sqrt{10-2 \sqrt{5}} \mathrm{R}$
- $\mathrm{d}_{3}=\mathrm{d}_{7}$
$=\frac{1}{2}(3+\sqrt{5}) \mathrm{a}=\frac{1}{5} \sqrt{50+10 \sqrt{5}} \mathrm{r}=\frac{1}{2}(1+\sqrt{5}) \mathrm{R}$
- $\mathrm{d}_{4}=\mathrm{d}_{6}$
$=\sqrt{5+2 \sqrt{5}} \mathrm{a}=2 \mathrm{r}=\frac{1}{2} \sqrt{10+2 \sqrt{5}} \mathrm{R}$
- d_{5}
$=(1+\sqrt{5}) \mathrm{a}=\frac{2}{5} \sqrt{50-10 \sqrt{5}} \mathrm{r}=2 \mathrm{R}$
- $d_{3}: R=\frac{1}{2}(1+\sqrt{5})=\varphi=$ the golden ratio

GG65-51

- S

$$
=\frac{5}{2} \sqrt{5+2 \sqrt{5}} \mathrm{a}^{2}
$$

$$
=2 \sqrt{25-10 \sqrt{5}} \mathrm{r}^{2}
$$

$$
=\frac{5}{4} \sqrt{10-2 \sqrt{5}} \mathrm{R}^{2}
$$

$$
=5 \mathrm{ar}
$$

GG65-52

- $\vartheta=36^{\circ}=\frac{\pi^{r}}{5}$
- $\alpha=144^{o}=\frac{4 \pi^{r}}{5}$
- $\beta=36^{\circ}=\frac{\pi^{r}}{5}$
- $\gamma=216^{0}=\frac{6 \pi^{r}}{5}$
- $\delta=72^{\circ}=\frac{2 \pi^{\mathrm{r}}}{5}$

GG65-53
D. star polygons
let

- $n \in$ int ≥ 5
- $(\mathrm{V}, \mathrm{P}) \in \mathrm{n}$-gon
wh $V=\left\langle\mathrm{A}_{0}, \mathrm{~A}_{1}, \cdots, \mathrm{~A}_{\mathrm{n}-1}\right\rangle$
- $\mathrm{k} \in \mathrm{int}$
st $2 \leq \mathrm{k} \leq \mathrm{n}-2 \& \mathrm{k}$ is coprime to n
then
the star polygon
of order $\mathrm{n} \&$ of span k
in (V, P)
$={ }_{\mathrm{dn}} \mathrm{SP}(\mathrm{n}, \mathrm{k} ;(\mathrm{V} . \mathrm{P}))$
$={ }_{d f}$ the n -gon whose vertex cycle is
$\left\langle\mathrm{A}_{0}, \mathrm{~A}_{\mathrm{k}}, \mathrm{A}_{2 \mathrm{k}}, \mathrm{A}_{3 \mathrm{k}}, \cdots, \mathrm{A}_{(\mathrm{n}-1) \mathrm{k}}\right\rangle$
wh the subscripts are to be reduced $\bmod n$
D. a regular star polygon
$=_{\mathrm{df}}$ a star polygon in a regular polygon
\square names of some n -gons starting with $\mathrm{n}=3$
n name of n -gon
3 triangle
4 quadrilateral = quadrangle
5 pentagon
6 hexagon
7 heptagon
8 octagon
9 nonagon
10 decagon
11 undecagon = hendecagon
12 dodecagon = duodecagon
13 tridecagon
14 tetradecagon
15 pentadecagon
16 hexadecagon
17 heptadecagon
18 octadecagon
19 enneadecagon
20 icosagon
30 triacontagon
40 tetracontagon
50 pentacontagon
60 hexacontagon
70 heptacontagon
80 octacontagon
90 enneacontagon
100 hectogon
1000 chiliagon
10000 myriagon
GG65-55
\square to make up a name of the n -gon
where n is an integer such that $20<\mathrm{n}<100$
but n is not a multiple of 10 , take
prefix + suffix $=n$
prefix
20 icosikai
30 triacontakai
40 tetracontakai
50 pentacontakai
60 hexacontakai
70 heptacontakai
80 octacontakai
90 enneacontakai
plus
suffix
1 henagon
2 digon
3 trigon
4 tetragon
5 pentagon
6 hexagon
7 heptagon
8 octagon
9 enneagon
note: the polygon words on this $\&$ the preceding page are rooted in Greek (and some Latin) number words $\& \gamma \omega \mathrm{vl} \alpha($ Greek $)=$ angle \& $\kappa \alpha \mathrm{l}($ Greek $)=$ and GG65-56
\square some names of regular star polygons
- pentagram
$<5,2>$
- septagrams
$<7,2>\&<7,3>$
- octogram
$<8,3$ >
- nonagrams = enneagrams
$<9,2>\&<9,4>$
- decagram
$<10,3$ >
- note: the hexagram is not a star polygon but rather the union of
two opposed congruent equilateral triangles with common center and parallel sides; the hexagram is formed also
by extending the sides of a regular hexagon; hexagram
= Star of David
= Shield of David
= Magen David
= Mogen David
= Solomon's Seal

GG65-57
\square more notions about polygons

- a polygon is said to be plane or skew according as
its vertices
do or do not
lie in a single plane
- a polygon is said to be oriented or nonoriented according as its vertex cycle is an oriented or a nonoriented cyclic sequence
- the preceding pages are confined to plane polygons \& may be considered to be confined to nonoriented polygons
- a polygon is said to be
self - intersecting or non - self - intersecting according as
the intersection of
some or no
pair of sides
contains an interior point of a side eg
regular polygons
are
non - self - intersecting
\&
star polygons
are
self - intersecting
- a sagitta of a regular polygon
$={ }_{\mathrm{df}}$ the line segment
from the midpoint of a side of the polygon
to the midpoint of the arc of the circumcircle
bounded by the endpoints of the side;
sagitta $=$ pr sa - JIT - uh
is the Latin word for ' arrow' ;
for an arc with chord
think of an arrow
from the midpoint of the straight taut string $=$ chord
to the midpoint of the bow $=$ arc
at rest in loading position;
a regular $n-$ gon $(\mathrm{n} \in \operatorname{int} \geq 3)$
has exactly n sagittas,
one to a side
- note: circumradius $=$ apothem + sagitta
\square cyclic sequences
- an /a oriented / nonoriented cyclic sequence is defined to be a certain kind of a set of sequences eg the oriented cyclic sequence
<a, b, c, d>
$=_{d f}$ the set of four sequences
\{(a, b, c, d),
(b, c, d, a),
(c, d, a, b),
(d, a, b, c) \}
\&
the nonoriented cyclic sequence
<< a, b, c, d>>
$=_{d f}\langle a, b, c, d\rangle \cup\langle d, c, b, a\rangle$

GG65-61

