SI Quantities/Units/Prefixes/Symbols
\#64 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG64-1 (104)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG64-2
$\square$ le Système International d'Unités (French)
$=$ the International System of Units
= SI units
= SI
wh SI comes from the initial letters of Système International
= the internationally accepted
system of physical units
originally proposed in 1960
and which is based on the metric system
$\square$ the terminology \& notation
of the SI base/derived quantities/units are given here
but their physical definitions are not; the terminology \& notation \& meanings of the SI numerical prefixes
are given here
$\square$ in general
subscripts of equaters are omitted to reduce clutter

GG64-3
$\square$ a few fundamental notions

- a measurement
$=$ a process of measuring
or
a result of measuring
$=$ a process that ends up with a numerical result or
the result itself $=$ the measure
note: a numerical result
is understood to be
a real number
or
a set of real numbers
accurate to
a certain number of decimal places say
- a physical quanitity
= quantity
$=$ any property of a physical object
that can be measured
- a unit of a quantity must be chosen
ito which the measurement of the quantity takes place
\&
ito which the quantity is measured \&
ito which the measure is stated
GG64-4
$\square$ SI contains systematically organized quantities \& units \& prefixes \& symbols
- an SI quantity is an SI base quantity
or
an SI derived quantity
- SI has 7 SI base quantities
- SI has about 400 SI derived quantities which are definable ito the 7 SI base quantities and
which are in scientific use
- SI has two notable SI derived quantities that are called
SI supplementary quantities
- the SI quantities are used
to describe/explain/measure the physical world

GG64-5

- an SI unit is
an SI base unit
or
an SI derived unit
- each SI quantity has its assigned SI unit; an SI base quantity has an SI base unit; an SI derived quantity has an SI derived unit; an SI supplementary quantity has an SI supplementary unit; the measure of an SI quantity attached to a particular physical object is expressed in the SI system as
a real number times the SI unit of the SI quantity wh the real number is regarded as having a certain degree of accuracy
- each SI derived quantity $x$ is defined ito SI base quantities
\&
other previously defined SI derived quantities;
such a definition of $x$ leads to
a quotient of products of these SI quantities, the entire expression being called the SI total quantity-dimension of $x$ \&
the terms of the expression being called the SI partial quantity-dimensions of $x$; by repeated reduction, an expression for the SI total quantity-dimension of $x$ as a quotient of products of SI base quantities may be obtained; using negative exponents the expression may be reduced to a single product; the overall idea is similar to that of writing a positive rational number
as a product of powers of prime numbers
with integer exponents

GG64-7

- each SI derived unit $x$ is defined ito SI base units
\&
other previously defined SI derived units;
such a definition of $x$ leads to
a quotient of products of these SI units; the entire expression being called the SI total unit-dimension of $x$ \&
the terms of the expression being called the SI partial unit-dimensions of $x$;
by repeated reduction,
an expression for
the SI total unit-dimension of x as
a quotient of products of SI base units may be obtained; using negative exponents the expression may be reduced to a single product; the overall idea is similar to that of writing a positive rational number
as a product of powers of prime numbers
with integer exponents

GG64-8

- SI has

SI names
for
all 7 SI base quantities

- SI has
special SI names \& special SI symbols
for
all 7 SI base units
- SI has
special SI names
for
some SI derived quantities
- SI has
special SI names \& special SI symbols
for
some SI derived units
- SI has

20 SI numerical decimal prefixes = SI prefixes
that multiply the SI units
by an integer power of 10 ;
each SI prefix has
its own SI word and its own SI symbol

- a quantity may have one or more
standard symbol in frequent use
that is not a part of SI
GG64-9
$\square$ SI is an independent coherent complete system of quantities/units
here
independent
means minimal
ie
no base quantity/unit
can be defined ito
the other base quantities/units
here
coherent
means that
every quantity/unit considered
can be defined ito
the base quantities/units
here
complete
means that every known physical property
can be defined ito
the base quantities
\&
can be measured ito
the base units
here
a definition
means a quotient of products of powers, all exponents being positive integers
GG64-10
$\square$ first summary list of the 7 matching triplets of the 7 SI base quantities, the 7 SI base units, the 7 SI base unit symbols
- length
meter
m
- mass
kilogram
kg
- time
second
S
- electric current ampere

A

- thermodynamic temperature kelvin
K
- luminous intensity
candela
cd
- amount of substance
mole mol
$\square$ second summary list of the 7 matching triplets of the 7 SI base quantities, the 7 SI base units, the 7 SI base unit symbols
quantity
length
mass
time
electric current
thermodynamic temperature
luminous intensity
amount of substance
mole

GG64-12
$\square$ the 7 SI base quantities \& related items
pattern for each base quantity

- SI base quantity
name of quantity
- SI base unit of quantity name of unit symbol of unit
- symbol(s) for quantity that are not a part of SI
- etymology of unit name

GG64-13

- SI base quantity
= length
- SI base unit of length
= meter
$=\mathrm{m} \leftarrow$ meter
- nonSI symbols for length
$=1$ (lowercase el), $\mathrm{L} \leftarrow$ length
- meter
$\uparrow$
$\mu \varepsilon \tau \rho o v$ (Greek)
= measure

GG64-14

- SI base quantity
= mass
- SI base unit of mass
$=$ kilogram
$=\mathrm{kg} \leftarrow$ kilogram
- nonSI symbols for mass
$=\mathrm{m}, \mathrm{M} \leftarrow$ mass

GG64-15

- kilogram
$\uparrow$
kilo -
$=$ thousand
$+$
gram
$=$ metric unit of mass
$\uparrow$
$\chi \imath \lambda 101$ (Greek)
= thousand
$+$
$\gamma \rho \alpha \mu \mu \alpha$ (Greek)
$=$ letter, writing, small weight


## - SI base quantity <br> = time

- SI base unit of time
$=$ second
$=\mathrm{s} \leftarrow$ second
- nonSI symbols for time
$=\mathrm{t}, \mathrm{T} \leftarrow$ time


## - second

$\uparrow$
pars minuta secunda (Latin)
$=$ second small part (of an hour)
ie
1 hour $\times \frac{1}{60} \times \frac{1}{60}=1$ second
note: ' minute' comes from
pars minuta prima (Latin)
$=$ first small part (of an hour)
ie
1 hour $\times \frac{1}{60}=1$ minute

- SI base quantity
= electric current
- SI base unit of electric current
= ampere
$=\mathrm{A} \leftarrow$ ampere
- nonSI symbol for electric current
= I
- ampere
$\uparrow$
André - Marie Ampère
1775-1836
French
physicist

GG64-19

- SI base quantity
$=$ thermodynamic temperature
- SI base unit of thermodynamic temperature
$=$ kelvin
$=\mathrm{K} \leftarrow$ kelvin
- nonSI symbol
for thermodynamic temperature
$=\mathrm{T} \leftarrow$ thermodynamic temperature
- kelvin
$\uparrow$
Lord Kelvin $=$ William Thomson
1824-1907
Scottish physicist

GG64-20

- SI base quantity
= luminous intensity
- SI base unit of luminous intensity
= candela
$=$ kan-DEL-uh
$=\mathrm{cd} \leftarrow$ candela
- nonSI symbol for luminous intensity
$=\mathrm{I}_{\mathrm{v}} \leftarrow$ intensity
- candela
$\uparrow$
candela (Latin)
= candle
- SI base quantity
= amount of substance
- SI base unit of amount of substance
$=$ mole
$=$ mol $\leftarrow$ mole
- nonSI symbol for amount of substance
$=\mathrm{n} \leftarrow$ number
- mole
$\uparrow$
das Moleculargewicht (German)
$=$ molecular weight

GG64-22
$\square$ first summary list of the 2 matching triplets of the 2 SI supplementary quantities, the 2 SI supplementary units, the 2 SI supplementary unit symbols

- plane angle
radian
rad
- solid angle steradian
sr
$\square$ second summary list of the 2 matching triplets of the 2 SI supplementary quantities, the 2 SI supplementary units, the 2 SI supplementary unit symbols
quantity
plane angle
solid angle
unit
radian
steradian
Sr
- SI supplementary quantity
= plane angle
- SI supplementary unit of plane angle
= radian
= RAY - dee - uhn
$=\operatorname{rad} \leftarrow$ radian
- nonSI symbols for a plane angle
= lowercase Greek letters
- radian
$\uparrow$ (conjectured)
a blend of
radius \& angle
viz
radius + angle; the word radian was first used in 1873
by James Thomson,
a brother of Lord Kelvin $=$ William Thomson
GG64-24
- SI supplementary quantity
= solid angle
- SI supplementary unit of solid angle
= steradian
= stih - RAY - dee - uhn
$=\mathrm{sr} \leftarrow$ steradian
- nonSI symbols for a solid angle
= capital Greek letters
- steradian
$\uparrow$
stereo - + radian
wh
the prefix stereo - = solid
comes from
$\sigma \tau \varepsilon \rho \varepsilon{ }^{\circ} \varsigma$ (Greek)
= solid

GG64-25
$\square$ some SI derived quantities \& their SI derived units for which the units are given SI special names/symbols

## pattern

- SI derived quantity
= names \& manifestations of quantity
= expression of quantity ito other SI quantities
- SI derived unit of quantity
= name of unit
= symbol of unit
= expression of unit ito other SI units
= expression of unit ito SI base units
- etymology of name of unit

GG64-26

- SI derived quantity
= absorbed dose
= absorbed dose index
= kerma (= acronym for
kinetic energy released in material)
= specific energy imparted
= energy per mass
= energy / mass
- SI derived unit of absorbed dose
= gray
$=G y \leftarrow$ gray
$=\mathrm{J} / \mathrm{kg}=\mathrm{m}^{2} \mathrm{~s}^{-2}$
- gray
$\uparrow$
Louis Harold Gray
1905-1965
English
radiologist
GG64-27
- SI derived quantity
= activity
= radionuclide activity
= unity per time
= 1 /time
- SI derived unit of activity
= becquerel
= BEK - kuh - rel
$=\mathrm{Bq} \leftarrow$ becquerel
$=1 / \mathrm{s}=\mathrm{s}^{-1}$
- becquerel
$\uparrow$
Antoine Henri Becquerel
1852-1908
French
physicist

GG64-28

- SI derived quantity
= capacitance
= charge per potential
= charge / potential
- SI derived unit of capacitance
= farad
= FAIR - uhd
$=\mathrm{F} \leftarrow \underline{\text { farad }}$
$=\mathrm{C} / \mathrm{V}=\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{4} \mathrm{~A}^{2}$
- farad
$\uparrow$
Michael Faraday
1791-1867
English
physicist

GG64-29

- SI derived quantity
= celsius temperature
- SI derived unit of celsius temperature
= degree celsius
= dee - GREE SEHL - see - uhs
$={ }^{\mathrm{o}} \mathrm{C} \leftarrow$ super circle for ' degree' \& celsius
$=$ ' degree celsius'

GG64-30

- degree
$\uparrow$
degradus (Latin)
= lit: a step down
$\uparrow$
de- (Latin)
= down
$+$
gradus (Latin)
$=$ step, grade
- celsius
$\uparrow$
Anders Celsius
1701-1744
Swedish
astronomer, physicist

GG64-31

- SI derived quantity
= dose equivalent
= dose equivalent index
= energy per mass
= energy / mass
- SI derived unit of dose equivalent
= sievert
= SEE - vert
$=\operatorname{Sv} \leftarrow$ sievert
$=\mathrm{J} / \mathrm{kg}=\mathrm{m}^{2} \mathrm{~s}^{-2}$
- sievert
$\uparrow$
Rolf Maximilian Sievert
1896-1966
Swedish
radiologist

GG64-32

- SI derived quantity
= electric charge
= quantity of electricity
= current times time
$=$ current $\times$ time
- SI derived unit of electric charge
= coulomb
= $\mathrm{KOO}-\mathrm{lom}$
$=\mathrm{C} \leftarrow$ coulomb
$=\mathrm{A} \times \mathrm{s}=\mathrm{sA}$
- coulomb $\uparrow$

Charles Augustin de Coulomb
1736-1806
French physicist

GG64-33

- SI derived quantity
= electric conductance
= current per potential $=$ unity per resistance
= current/potential $=$ unity $/$ resistance
- SI derived unit of electric conductance
= siemens
= SEE - menz
$=\mathrm{S} \leftarrow$ siemens
$=\mathrm{A} / \mathrm{V}=1 / \Omega=\mathrm{m}^{-2} \mathrm{~kg}^{-1} \mathrm{~s}^{3} \mathrm{~A}^{2}$
- siemens

Ernst Werner von Siemens
1816-1892
German
electrical engineer, inventor

GG64-34

- SI derived quantity
= electric potential
= electromotive force (= EMF)
= potential difference
= power per current
= power / current
- SI derived unit of electric potential
= volt
$=\mathrm{V} \leftarrow$ volt
$=\mathrm{W} / \mathrm{A}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-1}$
- volt
$\uparrow$
AlessandroVolta
1745-1827
Italian physicist
- SI derived quantity
= electric resistance
= potential per current $=$ unity per conductance
= potential/current $=$ unity $/$ conductance
- SI derived unit of electric resistance
= ohm
$=\Omega \leftarrow$ capital Greek letter omega
which is transliterated by
the capital English letter oh $\mathrm{O} \leftarrow$ ohm
$=\mathrm{V} / \mathrm{A}=1 / \mathrm{S}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3} \mathrm{~A}^{-2}$
- ohm
$\uparrow$
Georg Simon Ohm
1787-1854
German physicist
- SI derived quantity
= energy
$=$ work
$=$ quantity of heat
$=$ force times distance
$=$ force $\times$ distance
- SI derived unit of energy
= joule
$=\mathrm{JOOL}$
$=\mathrm{J} \leftarrow$ joule
$=\mathrm{N} \times \mathrm{m}=\mathrm{N} \cdot \mathrm{m}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
- joule
$\uparrow$
James Prescott Joule
1818-1889
English
physicist

GG64-37

- SI derived quantity
= force
$=$ mass times acceleration
$=$ mass $\times$ acceleration
- SI derived unit of force
= newton
$=\mathrm{N} \leftarrow$ newton
$=\mathrm{kg} \times\left(\mathrm{m} / \mathrm{s}^{2}\right)=\mathrm{mkg} \mathrm{s}^{-2}$
- newton
$\uparrow$
Isaac Newton
1642-1727
English
mathematician, physicist;
said to be the greatest scientist of all time

GG64-38

- SI derived quantity
= frequency
= unity per time
= unity $/$ time
- SI derived unit of frequency
= hertz
$=\mathrm{Hz} \leftarrow \underline{\text { hertz }}$
$=1 / \mathrm{s}=\mathrm{s}^{-1}$
- hertz
$\uparrow$
Heinrich Rudolph Hertz
1857-1894
German
physicist
- SI derived quantity
= illuminance
= illumination
= luminous flux per area
= (luminous flux) / area
- SI derived unit of illuminance
= lux
$=1 \mathrm{x} \leftarrow \underline{\operatorname{lux}}$
$=1 \mathrm{~m} / \mathrm{m}^{2}=\mathrm{m}^{-2} \mathrm{~cd} \mathrm{sr}$
- lux
$\uparrow$
lux (Latin)
= light, brightness

GG64-40

- SI derived quantity
= inductance
= magnetic flux per current
= (magnetic flux) / current
- SI derived unit of inductance
= henry
$=\mathrm{H} \leftarrow$ henry
$=\mathrm{Wb} / \mathrm{A}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$
- henry
$\uparrow$
Joseph Henry
1797-1878
American
physicist
- SI derived quantity
= luminous flux
= luminous flux times solid angle
$=$ (luminous intensity) $\times$ (solid angle)
- SI derived unit of luminous flux
= lumen
$=$ LOO-min
$=\operatorname{lm} \leftarrow$ lumen
$=\mathrm{cd} \times \mathrm{sr}=\mathrm{cd} \cdot \mathrm{sr}=\mathrm{cdsr}$
- lumen
$\uparrow$
lumen(Latin)
$=$ light, lamp

GG64-42

- SI derived quantity
$=$ magnetic flux
$=$ potential times time
$=$ potential $\times$ time
- SI derived unit of magnetic flux
= weber
= WEB-er
$=\mathrm{Wb} \leftarrow$ weber
$=\mathrm{V} \times \mathrm{s}=\mathrm{V} \cdot \mathrm{s}=\mathrm{Vs}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~A}^{-2}$
- weber
$\uparrow$
Wilhelm Eduard Weber
1804-1891
German
physicist

GG64-43

- SI derived quantity
= magnetic flux density
= magnetic flux per area
= (magnetic flux) / area
- SI derived unit of magnetic flux density
= tesla
= TES-luh
$=\mathrm{T} \leftarrow$ tesla
$=\mathrm{Wb} / \mathrm{m}^{2}=\mathrm{kg} \mathrm{s}^{-2} \mathrm{~A}^{-1}$
- tesla

Nikola Tesla
1856-1945
Croatian - American
physicist, electrical engineer, inventor

GG64-44

- SI derived quantity
$=$ power
$=$ radiant flux
$=$ energy per time
$=$ energy $/$ time
- SI derived unit of power
$=$ watt
$=\mathrm{W} \leftarrow \underline{\text { watt }}$
$=\mathrm{J} / \mathrm{s}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-3}$
- watt $\uparrow$

James Watt
1736-1819
Scottish
engineer, imventor

GG64-45

- SI derived quantity
= pressure
$=$ stress
$=$ force per area
$=$ force $/$ area
- SI derived unit of pressure
= pascal
$=$ PASS - kul
$=\mathrm{Pa} \leftarrow$ pascal
$=\mathrm{N} / \mathrm{m}^{2}=\mathrm{m}^{-1} \mathrm{~kg} \mathrm{~s}^{-2}$
- pascal
$\uparrow$
Blaise Pascal
1623-1662
French
mathematician, physicist, philosopher, inventor

GG64-46
$\square$ some SI derived quantities \& their SI derived units for which the units are not given SI special names/symbols

## pattern

- SI derived quantity
= names \& manifestations of quantity
= expression of quantity ito other SI quantities
- SI derived unit of quantity
= name of unit
= expression of unit ito other SI units
= expression of unit ito SI base units
- standard symbols for quantity that are not a part of SI
- SI derived quantity
= area
$=(\text { length })^{2}$
- SI derived unit of area
$=$ square meter
$=\mathrm{m}^{2}$
- nonSI symbols for area
$=\mathrm{A} \leftarrow \underline{\text { area }} \& \mathrm{~S} \leftarrow$ surface area
- SI derived quantity
$=$ volume
$=(\text { length })^{3}$
- SI derived unit of volume
= cubic meter
$=\mathrm{m}^{3}$
- nonSI symbol for volume
$=\mathrm{V} \leftarrow$ volume
- SI derived quantity
= (linear / orbital) speed
= magnitude of velocity (vector)
$=$ distance per time
= length / time
- SI derived unit of speed
$=$ meter per second
$=\mathrm{m} / \mathrm{s}=\mathrm{m} \mathrm{s}^{-1}$
- nonSI symbols for speed
$=\mathrm{r} \leftarrow$ rate of speed $\& \mathrm{v} \leftarrow$ magnitude of velocity
- SI derived quantity
= (linear / orbital) acceleration
= magnitude of acceleration vector
= distance per time per time
$=($ length $/$ time $) /$ time
- SI derived unit of acceleration
= meter per second per second
= meter per second squared
$=(\mathrm{m} / \mathrm{s}) / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}=\mathrm{m} \mathrm{s}^{-2}$
- nonSI symbol for acceleration
$=\mathrm{a} \leftarrow$ acceleration
- SI derived quantity
= angular speed
= magnitude of rotation vector
= angular displacement per time
= angle / time
- SI derived unit of angular speed
= radian per second
$=\mathrm{rad} / \mathrm{s}=\mathrm{s}^{-1} \mathrm{rad}$
- nonSI symbol for angular speed
= $\omega$
- SI derived quantity
= angular acceleration
= angular displacement per time per time
$=$ (angle $/$ time) $/$ time
- SI derived unit of angular acceleration
= radian per second per second
$=$ radian per second squared
$=(\mathrm{rad} / \mathrm{s}) / \mathrm{s}=\mathrm{rad} / \mathrm{s}^{2}=\mathrm{s}^{-2} \mathrm{rad}$
- nonSI symbol for angular acceleration
$=\alpha \leftarrow$ angular acceleration
(a being the transliteration of $\alpha$ )
- SI derived quantity
= torque
= moment of force
$=$ force times distance
$=$ force $\times$ distance
- SI derived unit of torque
= newton meter
$=\mathrm{N} \times \mathrm{m}=\mathrm{N} \cdot \mathrm{m}=\mathrm{Nm}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2}$
- nonSI symbol for torque
$=\mathrm{T} \leftarrow$ torque
- SI derived quantity
= (linear / orbital) momentum
$=$ mass times speed
$=$ mass $\times$ speed
- SI derived unit of momentum
$=$ meter kilogram per second
$=(\mathrm{m} \times \mathrm{kg}) / \mathrm{s}=\mathrm{mkg} \mathrm{s}^{-1}$
- nonSI symbol for momentum
$=\mathrm{p} \leftarrow$ potentia (Latin) $=$ might
- SI derived quantity
= angular momentum
= spin angular momentun
= orbital angular momentum
= moment of linear momentum
$=$ linear momentum times distance
$=$ (linear momentum) $\times$ distance
- SI derived unit of angular momentum
$=$ square meter kilogram per second
$=\left(\mathrm{m}^{2} \times \mathrm{kg}\right) / \mathrm{s}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-1}$
- nonSI symbol for angular momentum
= L
- SI derived quantity
= surface tension
= force per length
= force / length
- SI derived unit of surface tension
= newton per meter
$=\mathrm{N} / \mathrm{m}=\mathrm{kg} \mathrm{s}^{-2}$
- nonSI symbol for surface tension
$=\mathrm{T} \leftarrow$ tension
- SI derived quantity
= electric field strength
= electric potential per length
$=($ electric potential) $/$ length
- SI derived unit of electric field strength
$=$ volt per meter
$=\mathrm{V} / \mathrm{m}=\mathrm{mkg} \mathrm{s}^{-3} \mathrm{~A}^{-1}$
- nonSI symbol for electric field strength
$=\mathrm{E} \leftarrow$ electric
- SI derived quantity
$=$ magnetic field strength
= magnetic field intensity
= current per length
= current / length
- SI derived unit of magnetic field strength
= ampere per meter
$=\mathrm{A} / \mathrm{m}=\mathrm{m}^{-1} \mathrm{~A}$
- nonSI symbol for magnetic field strength
$=\mathrm{H}$
- SI derived quantity
= luminance
= luminous intensity per area
= (luminous intensity) / area
- SI derived unit of luminance
= candela per square meter
$=\mathrm{cd} / \mathrm{m}^{2}=\mathrm{m}^{-2} \mathrm{~cd}$
- nonSI symbol for luminance
$=\mathrm{L} \leftarrow$ luminance
- SI derived quantity
= irradiance
= heat flux density
= power per area
= power / area
- SI derived unit of irradiance
= watt per square meter
$=\mathrm{W} / \mathrm{m}^{2}=\mathrm{kg} \mathrm{s}^{-3}$
- nonSI symbol for irradiance
= E
- SI derived quantity
= concentration
= amount of substance per volume
$=$ (amount of substance) $/$ volume
- SI derived unit of concentration
$=$ mole per cubic meter
$=\mathrm{mol} / \mathrm{m}^{3}=\mathrm{m}^{-3} \mathrm{~mol}$
- SI derived quantity
$=$ wave number
$=$ unity per length
= $1 /$ length
- SI derived unit of wave number
$=$ reciprocal meter
$=$ per meter
$=1 / \mathrm{m}=\mathrm{m}^{-1}$
- nonSI symbol for wave number
$=\sigma$
- SI derived quantity
$=$ density
$=$ mass density
$=$ mass per volume
$=$ mass / volume
- SI derived unit of density
$=$ kilogram per cubic meter
$=\mathrm{kg} / \mathrm{m}^{3}=\mathrm{m}^{-3} \mathrm{~kg}$
- nonSI symbol for density
$=\mathrm{d} \leftarrow$ density
- SI derived quantity
= volumetric flow rate
= volume per time
= volume / time
- SI derived unit of volumetric flow rate
$=$ cubic meter per second
$=\mathrm{m}^{3} / \mathrm{s}=\mathrm{m}^{3} \mathrm{~s}^{-1}$
- nonSI symbol for volumetric flow rate
$=r \leftarrow$ rate
- SI derived quantity
= entropy
= heat capacity
= energy per thermodynamic temperature
= energy / (thermodynamic temperature)
- SI derived unit of entropy
= joule per kelvin
$=\mathrm{J} / \mathrm{K}=\mathrm{m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
- nonSI symbol for entropy
= S
$\square$ a note that is more math than physics
- the three quantities
length, distance, linear displacement are mathematically related but differ in concept; usually distance is defined ito length and linear displacement is defined ito distance; all three quantities are measured ito the SI base unit of length viz meter
wi denoted by the SI base symbol m
- length
is an SI base quantity;
but
distance \& linear displacement
are SI derived quantities
GG64-67
- nonSI symbols for length
$\mathrm{L} \leftarrow$ length
$\mathrm{s} \leftarrow$ subtending arc (conjecture)
- nonSI symbol for distance
$\mathrm{d} \leftarrow$ distance
- nonSI symbol for displacement $\mathrm{d} \leftarrow$ displacement
- angular displacement
is an SI derived quantity
wi an angle
\& $\therefore$
is measured by
the SI derived unit of angle
viz radian
wi denoted by
the SI derived symbol
rad
- nonSI symbol for angular displacement
$\vartheta \leftarrow$ notational convention
of denoting angles by lowercase Greek letters; also $\vartheta$ is the customary angle variable for the second plane polar coordinate \& the second cylindrical coordinate
$\square$ several terminological conventions that are of frequent or occasional use but are not of universal applicability
- specific quantity
= quantity per unit mass
- quantity density
= quantity per unit volume/area/length
- quantity strength
= quantity intensity
- quantity index
= quantity
- omitting a word
from a phrase naming a quantity in a particular context
when no ambiguity can occur
eg
electric charge $=$ charge
magnetic flux = flux
linear speed $=$ speed
velocity vector $=$ velocity

GG64-70
$\square$ the 20 SI prefixes of SI units pattern

- prefix
pronunciation
symbol
word form
expanded base ten form
exponent form
etymology
example

GG64-71

- deca -
$=$ DEK - uh
$=$ da $\leftarrow$ deca -
$=$ ten
$=10$
$=10^{1}$
$\uparrow$
$\delta \varepsilon \kappa \alpha$ (Greek)
$=$ ten
eg
one decameter
$=1 \mathrm{dam}$
$=$ ten meters
$=10 \mathrm{~m}$
$=10^{1} \mathrm{~m}$

GG64-72

- hecto -
$=$ HEK - toh
$=\mathrm{h} \leftarrow$ hecto-
$=$ one hundred
$=100$
$=10^{2}$
$\uparrow$
$\varepsilon \kappa \alpha \tau о \nu$ (Greek)
= hundred
eg
one hectometer
$=1 \mathrm{hm}$
$=$ one hundred meters
$=100 \mathrm{~m}$
$=10^{2} \mathrm{~m}$

GG64-73

- kilo -
$=$ KIL - oh
$=\mathrm{k} \leftarrow$ kilo -
$=$ one thousand
$=1000$
$=10^{3}$
$\uparrow$
$\chi 1 \lambda$ loı (Greek)
$=$ thousand eg one kilometer
$=1 \mathrm{~km}$
$=$ one thousand meters
$=1000 \mathrm{~m}$
$=10^{3} \mathrm{~m}$

GG64-74

- mega -
$=$ MEG -uh
$=\mathrm{M} \leftarrow$ mega -
$=$ one million
$=1000000$
$=10^{6}$
$\uparrow$
$\mu \varepsilon \gamma \alpha \varsigma$ (Greek)
= large
eg
one megameter
$=1 \mathrm{Mm}$
$=$ one million meters
$=1000000 \mathrm{~m}$
$=10^{6} \mathrm{~m}$
- giga -
$=\mathrm{JIG}-\mathrm{uh}$
$=\mathrm{G} \leftarrow$ giga -
$=$ one billion
$=1000000000$
$=10^{9}$
$\uparrow$
gigas (Latin)
$=$ giant
$\uparrow$
$\gamma \gamma \omega_{\varsigma}$ (Greek)
$=$ giant
eg
one gigameter
$=1 \mathrm{Gm}$
$=$ one billion meters
$=1000000000 \mathrm{~m}$
$=10^{9} \mathrm{~m}$
- tera -
$=$ TER - uh
$=\mathrm{T} \leftarrow$ tera -
$=$ one trillion
$=1000000000000$
$=10^{12}$
$\uparrow$
$\tau \varepsilon \rho \alpha \varsigma$ (Greek)
$=$ monster
eg
one terameter
$=1 \mathrm{Tm}$
$=$ one trillion meters
$=1000000000000 \mathrm{~m}$
$=10^{12} \mathrm{~m}$
- peta -
$=$ PED - uh
$=\mathrm{P} \leftarrow$ peta -
$=$ one quadrillion
$=1000000000000000$
$=10^{15}$
$\uparrow$
designed variation of
$\pi \varepsilon \nu \tau \varepsilon$ (Greek)
$=$ five
eg
one petameter
$=1 \mathrm{Pm}$
$=$ one quadrillion meters
$=1000000000000000 \mathrm{~m}$
$=10^{15} \mathrm{~m}$
$=\mathrm{EKS}-\mathrm{uh}$
$=\mathrm{E} \leftarrow$ exa -
$=$ one quintillion
$=1000000000000000000$
$=10^{18}$
$\uparrow$
designed variation of
$\varepsilon \xi$ (Greek)
$=\operatorname{six}$
eg
one exameter
$=1 \mathrm{Em}$
$=$ one quintillion meters
$=1000000000000000000 \mathrm{~m}$
$=10^{18} \mathrm{~m}$
- zetta -
= ZET - uh
$=\mathrm{Z} \leftarrow$ zetta -
$=$ one sextillion
$=1000000000000000000000$
$=10^{21}$
$\uparrow$
designed variation of
septem (Latin)
= seven
eg
one zettameter
$=1 \mathrm{Zm}$
$=$ one sextillion meters
$=1000000000000000000000 \mathrm{~m}$
$=10^{21} \mathrm{~m}$
- yotta -
$=$ YOT -uh
$=\mathrm{Y} \leftarrow$ yotta -
$=$ one septillion
$=1000000000000000000000000$
$=10^{24}$
$\uparrow$
designed variation of
octo (Latin)
$=$ eight
eg
one yottameter
$=1 \mathrm{Ym}$
$=$ one septillion meters
$=1000000000000000000000000 \mathrm{~m}$
$=10^{24} \mathrm{~m}$
- deci-
$=$ DES-ee
$=\mathrm{D} \leftarrow$ deci -
$=$ one tenth
$=0.1$
$=10^{-1}$
$\uparrow$
decimus (Latin)
$=$ tenth
eg
one decimeter
$=1 \mathrm{dm}$
$=$ one tenth of a meter
$=0.1 \mathrm{~m}$
$=10^{-1} \mathrm{~m}$

GG64-82

```
- centi -
= SEN - tee
c}\leftarrow<<centi -
= one hundredth
= 0.01
= 10-2
\uparrow
centum (Latin)
= hundred
eg
one centimeter
= 1cm
= one hundredth of a meter
= 0.01m
= 10-2}\textrm{m
```

- milli -
$=$ MIL-ee
$=\mathrm{m} \leftarrow$ milli -
= one thousandth
$=0.001$
$=10^{-3}$
$\uparrow$
mille (Latin)
$=$ thousand
eg
one millimeter
$=1 \mathrm{~mm}$
$=$ one thousandth of a meter
$=0.001 \mathrm{~m}$
$=10^{-3} \mathrm{~m}$

GG64-84

- micro-
$=$ MEY - kroh
$=\mu \leftarrow$ lowercase Greek letter mu corresponding to
the lowercase English letter em
$\mathrm{m} \leftarrow$ micro -
$=$ one millionth
$=0.000001$
$=10^{-6}$
$\uparrow$
$\mu$ ıкроऽ (Greek)
= small
eg
one micrometer
$=$ one micron
$=1 \mu \mathrm{~m}$
$=$ one millionth of a meter
$=0.000001 \mathrm{~m}$
$=10^{-6} \mathrm{~m}$

GG64-85

- nano-
$=\mathrm{NAN}-$ oh
$=\mathrm{n} \leftarrow$ nano-
$=$ one billionth
$=0.000000001$
$=10^{-9}$
$\uparrow$
vovos (Greek)
= dwarf
eg
one nanometer
$=1 \mathrm{~nm}$
$=$ one billionth of a meter
$=0.000000001 \mathrm{~m}$
$=10^{-9} \mathrm{~m}$
- pico-
$=$ PIK - oh
$=\mathrm{p} \leftarrow$ pico -
$=$ one trillionth
$=0.000000000001$
$=10^{-12}$
$\uparrow$
pico (Spanish)
= beak, tip, peak, small amount
\&
piccolo (Italian)
$=$ small
eg
one picometer
$=1 \mathrm{pm}$
$=$ one trillionth of a meter
$=0.000000000001 \mathrm{~m}$
$=10^{-12} \mathrm{~m}$
- femto -
$=$ FEM - toh
$=\mathrm{f} \leftarrow$ femto -
$=$ one quadrillionth
$=0.000000000000001$
$=10^{-15}$
$\uparrow$
femten (Danish \& Norwegian)
$=$ fifteen
eg
one femtometer
$=1 \mathrm{fm}$
$=$ one quadrillionth of a meter
$=0.000000000000001 \mathrm{~m}$
$=10^{-15} \mathrm{~m}$
- atto -
$=\mathrm{AT}-$ toh
$=\mathrm{a} \leftarrow$ atto -
$=$ one quintillionth
$=0.000000000000000001$
$=10^{-18}$
$\uparrow$
atten (Danish \& Norwegian)
$=$ eighteen
eg
one attometer
= 1 am
$=$ one quintillionth of a meter
$=0.000000000000000001 \mathrm{~m}$
$=10^{-18} \mathrm{~m}$
- zepto-
$=\mathrm{ZEP}$ - toh
$=\mathrm{z} \leftarrow$ zepto -
$=$ one sextillionth
$=0.000000000000000000001$
$=10^{-21}$
$\uparrow$
designed variation of
septem (Latin)
= seven
eg
one zeptometer
$=1 \mathrm{zm}$
$=$ one sextillionth of a meter
$=0.000000000000000000001 \mathrm{~m}$
$=10^{-21} \mathrm{~m}$
- yocto-
$=$ YOK - toh
$=\mathrm{y} \leftarrow$ yocto-
= one septillionth
$=0.000000000000000000000001$
$=10^{-24}$
$\uparrow$
designed variation of
octo (Latin)
$=$ eight
eg
one yoctometer
$=1 \mathrm{ym}$
$=$ one septillionth of a meter
$=0.000000000000000000000001 \mathrm{~m}$
$=10^{-24} \mathrm{~m}$
$\square$ twelve pages listing all twenty of the SI prefix / symbol / value triplets in the order of prefix, symbol, value, vertically \& horizontally, increasing \& decreasing
- deca
da
$10^{1}$
- hecto
h
$10^{2}$
- kilo
k
$10^{3}$
- mega

M
$10^{6}$

- giga G
$10^{9}$

GG64-93

## - tera <br> T <br> $10^{12}$

## - peta

P
$10^{15}$

- exa

E
$10^{18}$

- zetta

Z
$10^{21}$

- yotta Y
$10^{24}$

GG64-94

- deci
d
$10^{-1}$
- centi
c
$10^{-2}$
- milli
m
$10^{-3}$
- micro
$\mu$
$10^{-6}$
- nano
n
$10^{-9}$

GG64-95

- pico p
$10^{-12}$
- femto
f
$10^{-15}$
- atto
a
$10^{-18}$
- zepto

Z
$10^{-21}$

- yocto
y
$10^{-24}$

GG64-96

- yotta

Y
$10^{24}$

- zetta

Z
$10^{21}$

- exa

E
$10^{18}$

- peta P
$10^{15}$
- tera

T
$10^{12}$

GG64-97

- giga

G
$10^{9}$

- mega

M
$10^{6}$

- kilo
k
$10^{3}$
- hecto
h
$10^{2}$
- deca
da
$10^{1}$

GG64-98

- yocto
y
$10^{-24}$
- zepto

Z
$10^{-21}$

- atto
a
$10^{-18}$
- femto
f
$10^{-15}$
- pico
p
$10^{-12}$

GG64-99

## - nano

n
$10^{-9}$

- micro
$\mu$
$10^{-6}$
- milli
m
$10^{-3}$
- centi
c
$10^{-2}$
- deci
d
$10^{-1}$

GG64-100

| deca | da | $10^{1}$ |
| :--- | :--- | :--- |
| hecto | h | $10^{2}$ |
| kilo | k | $10^{3}$ |
| mega | M | $10^{6}$ |
| giga | G | $10^{9}$ |
| tera | T | $10^{12}$ |
| peta | P | $10^{15}$ |
| exa | Z | $10^{18}$ |
| zetta | Y | $10^{21}$ |
| yotta | $10^{24}$ |  |

GG64-101

| deci | d | $10^{-1}$ |
| :--- | :--- | :--- |
| centi | c | $10^{-2}$ |
| milli | m | $10^{-3}$ |
| micro | $\mu$ | $10^{-6}$ |
| nano | n | $10^{-9}$ |
| pico | p | $10^{-12}$ |
| femto | f | $10^{-15}$ |
| atto | a | $10^{-18}$ |
| zepto | z | $10^{-21}$ |
| yocto | y | $10^{-24}$ |

GG64-102

| yotta | Y | $10^{24}$ |
| :--- | :--- | :--- |
| zetta | Z | $10^{21}$ |
| exa | E | $10^{18}$ |
| peta | P | $10^{15}$ |
| tera | T | $10^{12}$ |
| giga | G | $10^{9}$ |
| mega | M | $10^{6}$ |
| kilo | k | $10^{3}$ |
| hecto | h | $10^{2}$ |
| deca | da | $10^{1}$ |

GG64-103

| yocto | y | $10^{-24}$ |
| :--- | :--- | :--- |
| zepto | z | $10^{-21}$ |
| atto | a | $10^{-18}$ |
| femto | f | $10^{-15}$ |
| pico | p | $10^{-12}$ |
| micro | $\mu$ | $10^{-6}$ |
| nano | n | $10^{-9}$ |
| micro | $\mu$ | $10^{-6}$ |
| milli | m | $10^{-3}$ |
| centi | c | $10^{-2}$ |
| deci | d | $10^{-1}$ |

