A Small Slice of Pi

\#61 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG61-1 (31)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG61-2
\square a small slice of pi
= a modicum of information about
everybody's favorite transcendental number π

- the circle ratio
= the circumference-to-diameter ratio of any euclidean circle
$=$ the dimensionless periphery of a euclidean circle with unit diameter
$=\mathrm{pi}$
$=\pi$
= the lowercase Greek letter corresponding to the English letter p
$=$ the initial letter of the Greek word $\pi \varepsilon \rho ı ф _\rho \varepsilon 1 \alpha$
$=$ periphery, circumference from
$\pi \varepsilon \rho ı \phi \varepsilon \rho \varepsilon ı v$ (Greek)
$=$ to carry around
from
$\pi \varepsilon \rho ı$ (Greek)
= around
$+$
фєрєıv (Greek)
= to carry
- the symbol π for the circle ratio was introduced in 1706 by William Jones \& was adopted in 1737 by Euler
- William Jones

1675-1749
English
mathematics textbook writer

- Leonhard Euler

1707-1783
Swiss, lived many years in Germany \& Russia algebraist, analyst, geometer, number theorist, probabilist, applied mathematician, calculating prodigy; most prolific mathematician of all time

- in 1882 Lindemann proved that π is transcendental
- Carl Louis Ferdinand von Lindemann 1852-1939
German
analyst, geometer
- ¿ what is your favorite transcendental number?
i prefer pi (a palindrome)

GG61-4

- some approximations to π of historical interest are given below
- the Babylonian value of π from ca 2000 BCE
$\pi \approx \frac{5^{2}}{2^{3}}=\frac{25}{8}=3 \frac{1}{8}=3.125$
which is accurate to one decimal place before and after rounding off
- the Egyptian value of π from ca 2000 BCE
$\pi \approx 4\left(\frac{8}{9}\right)^{2}=\left(\frac{16}{9}\right)^{2}=\left(\frac{4}{3}\right)^{4}=\frac{2^{8}}{3^{4}}=\frac{256}{81}=3 \frac{13}{81}=3.16 \cdots$
which is accurate to one decimal place before rounding off

GG61-5

- the biblical value of π from ca 550 BCE
$\pi \approx 3$
which is
the floor of π
$=$ the integer part of π
$=$ the nearest integer to π
- 1 Kings 7:23 KJV

And he made a molten sea, ten cubits from the one brim to the other:
it was round all about, and his height was five cubits:
and a line of thirty cubits did compass it round about.

- 2 Chronicles 4:2 KJV

Also he made a molten sea of ten cubits from brim to brim, round in compass, and five cubits the height thereof; and a line of thirty cubits did compass it round about.

- cubit
= ancient Middle Eastern standard unit of length
= length of forearm
from elbow to tip of extended middle finger
= usually ca 18 inches
comes from the Latin word cubitum = elbow

GG61-6

- the Archimedean value of π from ca 250 BCE
$\pi \approx \frac{22}{7}=3 \frac{1}{7}=3.1428 \cdots$
which is accurate to two decimal places before and after rounding off;
Archimedes was the first to devise a method of theoretically calculating π to any degree of accuracy by considering the lengths
of regular inscribed/circumscribed polygons
in/about a circle;
he used a 96 -gon to obtain his value
- Archimedes of Syracuse
ca 287-212 BCE
Greek
mathematician, physicist, inventor;
Archimedes, Newton, Gauss (in chronological order) are said to be
the three greatest mathematicians of all time

GG61-7

- the Ptolemaic value of π from ca 150 CE
$\pi \approx \frac{377}{120}=3 \frac{17}{120}=3.14166 \cdots$
which is accurate to four decimal places before rounding off
- $\pi \approx 3.1416$
is called
the Ptolemaic decimal value of π
- Ptolemy of Alexandria = Claudius Ptolemaeus (Latin) ca 85 -ca 165 CE
Alexandrian
mathematician, astronomer, geographer
- the Chinese value of π from ca 470 CE
$\pi \approx \frac{355}{113}=3 \frac{16}{113}=3.1415929 \ldots$
which is accurate to six decimal places before rounding off; used by Tsu Chung-chih
- Tsu Chung-chih

430-501 CE
Chinese
mathematician

GG61-9

- note the numerical curiosity

$$
\frac{355}{113}=\frac{377-22}{120-7}
$$

which relates the three values of π

$$
\begin{aligned}
& \frac{355}{113}=\text { the Chinese value } \\
& \frac{377}{120}=\text { the Ptolemaic value } \\
& \frac{22}{7}=\text { the Archimedean value }
\end{aligned}
$$

- the Indian value of π from ca 500 CE
$\pi \approx 3.1416$
which is accurate to four decimal places; used by Aryabhata
- Aryabhata
ca 476-ca 550 CE
Indian (India)
algebraist, geometer, astronomer
- Brahmagupta's values of π from ca 628 CE the 'practical value' of π is 3
\&
the 'neat value' of π is $\sqrt{10}=3.16 \cdots$
- Brahmagupta
ca 588-660 CE
Indian (India)
algebraist, diophantine analyst, geometer, astronomer

GG61-11

- a Ramanujan value of π
$\pi \approx \sqrt{\frac{2143}{22}}=3.14159265 \cdots$
which is accurate to eight decimal places
- Srinivasa Aiyangar Ramanujan

1887-1920
Indian (India)
analyst, number theorist;
self-taught, arrived at results by intuition

GG61-12

- the first infinite series ever found for π is the simple and pretty
Leibniz series

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots
$$

but to calculate π from this series is practically impossible because of the very slow convergence of the series; eg 300 terms do not give an accuracy to two decimal places \& 100,000 terms are needed for accuracy to five decimal places

- Gottfried Wilhelm Leibniz

1646-1716
German
algebraist, analyst, logician, philosopher, scholarly writer, diplomat, theologian; independent codiscoverer with Newton of the differential \& integral calculus

GG61-13

- a more efficient way to calculate π that is of historical interest is to use Gregory's series
$\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \quad(-1 \leq x \leq 1)$
and Machin's formula
$\frac{\pi}{4}=4 \tan ^{-1} \frac{1}{5}-\tan ^{-1} \frac{1}{239}$
which was done in 1706 by Machin to calculate π to 100 decimal places
- James Gregory

1638-1675
Scottish
analyst, geometer, inventor, physicist

- John Machin

1680-1751
English
computer of π, astronomer

GG61-14

- a series due to Euler whose sum involves π (he had many such)
$1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots=\frac{\pi^{2}}{6}=\zeta(2)$
where

$$
\zeta(\mathrm{z})=1+\frac{1}{2^{\mathrm{z}}}+\frac{1}{3^{\mathrm{z}}}+\frac{1}{4^{\mathrm{z}}}+\cdots \quad(\mathrm{z} \in \text { complex var })
$$

is the zeta function of Riemann

- Georg Friedrich Bernhard Riemann 1826-1866
German analyst, geometer, number theorist, topologist, physicist

GG61-15

- Newton's series for π in the series
$\sin ^{-1} x=x+\frac{1}{2} \frac{x^{3}}{3}+\frac{1 \cdot 3}{2 \cdot 4} \frac{x^{5}}{5}+\frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^{7}}{7}+\cdots \quad(-1 \leq x \leq 1)$
substitute $\mathrm{x}=1 / 2$
- Isaac Newton

1641-1727
English
algebraist, analyst, geometer, astronomner, physicist, government official; independent codiscoverer with Leibniz of the differential \& integral calculus;
Archimedes, Newton, Gauss (in chronological order) are said to be the three greatest mathematicians of all time

GG61-16

- in 1593 Viète gave the first numerically precise infinite expression for π viz
Viète's infinite product for π
$\frac{2}{\pi}=\prod_{\mathrm{n}=2}^{\infty} \cos \frac{\pi}{2^{\mathrm{n}}}=\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}}} \cdots$
note that
to pass from any term of the product to the next term:
replace the last $\frac{1}{2}$ by $\frac{1}{2}+\frac{1}{2} \sqrt{\frac{1}{2}}$
- François Viète (French) = Franciscus Vieta (Latin) 1540-1603
French
algebraist, geometer, cryptanalyst, lawyer, statesman

GG61-17

- Wallis's infinite product for π
$\frac{\pi}{2}=\frac{2}{1} \frac{2}{3} \frac{4}{3} \frac{4}{5} \frac{6}{5} \frac{6}{7} \ldots$
- John Wallis

1616-1703
English
algebraist, analyst, geometer, logician, historian of mathematics, calculating prodigy, cryptanalyst, linguist, theologian, royal chaplain to Charles II

- Brouncker's continued fraction for π

$$
\frac{\pi}{4}=\frac{1}{1+2+2+2+} \frac{1^{2}}{2+} \frac{5^{2}}{2} \ldots
$$

- William Brouncker

1620-1684
Irish
analyst;
founding member \& first president of the Royal Society;
2nd Viscount Brouncker of Castle Lyons

GG61-18

- Lambert's regular continued fraction for π
the first few terms are

$$
\pi=3+\frac{1}{7+} \frac{1}{15+}+\frac{1}{1+} \frac{1}{292+}+\frac{1}{1+} \frac{1}{1+1+2+} \frac{1}{2+} \cdots
$$

no law of formation is known; the first ten convergents are:
(1) $3: 1$
(2) $22: 7$
(3) $333: 106$
(4) $355: 113$
(5) $103993: 33102$
(6) $104348: 33215$
(7) $208341: 66317$
(8) $312689: 99532$
(9) $833719: 265381$
(10) $1146408: 364913$

- Johann Heinrich Lambert

1728-1777
German
analyst, geometer, number theorist, probabilist, applied mathematician, astronomer, philosopher, physicist

GG61-19

- lots of definite integrals have values involving π; here is a handful
(1) $\int_{0}^{1} \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}=\frac{\pi}{4}$
which is likely the simplest integral for π \&
which could serve as
a simple closed analytic definition of π
(2) $\int_{0}^{1} \frac{\mathrm{dx}}{\sqrt{1-\mathrm{x}^{2}}}=\frac{\pi}{2}$
(3) $\int_{0}^{1} \frac{\log x}{x-1} d x=\frac{\pi^{2}}{6}$
(4) the probability integral
$=$ the area under the probability curve $y=e^{-x^{2}}$
$=\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$
(5) $\int_{0}^{\infty} \frac{\mathrm{dx}}{\sqrt{\mathrm{x}} \mathrm{e}^{\mathrm{x}}}=\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

GG61-20
(6) $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$
(7) $\int_{0}^{\infty} \frac{x}{\sinh x} d x=\frac{\pi^{2}}{4}$
(8) $\int_{0}^{\pi} \sin x d x=2$
(9) $\int_{0}^{2 \pi} \sin ^{2} x d x=\pi$
(10) $\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x=\frac{\pi}{8} \log 2$

- sometimes geometry is simpler than analysis eg consider the geometric interpretation of the following integral whose value is not immediately obvious from analytical considerations:

$$
\int_{0}^{1} \sqrt{1-x^{2}} \mathrm{dx}=\frac{\pi}{4}
$$

GG61-21

- from ancient times
some geometry involving π
consider
a circle
in the euclidean plane with
radius $\quad \mathrm{r}$
diameter d
circumference C
area
then
$\mathrm{C}=2 \pi \mathrm{r}=\pi \mathrm{d}$
$\mathrm{A}=\pi \mathrm{r}^{2}=\frac{1}{4} \pi \mathrm{~d}^{2}$

$$
\begin{aligned}
& \text { consider a sphere } \\
& \text { in euclidean 3-space } \\
& \text { with } \\
& \text { radius } \\
& \text { diameter } \\
& \text { surface area } \\
& \text { volume } \\
& \text { d } \\
& \text { then } \\
& \text { th } \\
& \mathrm{S}=4 \pi \mathrm{r}^{2}=\pi \mathrm{d}^{2} \\
& \mathrm{~V}=\frac{4}{3} \pi \mathrm{r}^{3}=\frac{1}{6} \pi \mathrm{~d}^{3}
\end{aligned}
$$

GG61-23

- from modern times
some geometry involving π
consider
a closed regular surface S
in euclidean 3-space with
Gaussian curvature
Euler characteristic element of surface area
then
$\int_{S} \mathrm{Kd} \sigma=2 \pi \chi$
this is the famous Gauss-Bonnet theorem/formula which says
geometry = topology
- Carl Friedrich Gauss

1777-1855
German
algebraist, analyst, geometer, number theorist, numerical analyst, probabilist, statistician, astronomer, physicist, calculating prodigy;
Archimedes, Newton, Gauss (in chronological order) are said to be the three greatest mathematicians of all time

- Pierre Ossian Bonnet

1819-1892
French
analyst, geometer
GG61-24

- from trigonometry plane/solid angle measurement involves π
one round plane angle
$=$ three hundred sixty degrees
$=360^{\circ}$
$=$ two pi radians
$=2 \pi^{r}$
one round solid angle
$=$ four pi steradians
$=4 \pi^{\mathrm{sr}}$
- from analysis
two Euler formulas involving π

Euler's little formula
unites
four basic constants in one epiphany equation
$e^{\pi \mathrm{i}}+1=0$
which is an immediate consequence of Euler's big formula
$e^{i x}=\cos x+i \sin x$

G61-26

- from the theory of numbers an asymptotic formula involving π

Stirling's formula
(which is actually due to De Moivre)
approximates large factorials
$\mathrm{n}!\sim \sqrt{2 \pi \mathrm{e}}\left(\frac{\mathrm{n}}{\mathrm{e}}\right)^{\mathrm{n}+\frac{1}{2}}=\sqrt{2 \pi \mathrm{n}}\left(\frac{\mathrm{n}}{\mathrm{e}}\right)^{\mathrm{n}}=\sqrt{2 \pi n} \mathrm{e}^{-\mathrm{n}} \mathrm{n}^{\mathrm{n}}$
as $\mathrm{n} \rightarrow \infty$
where $\mathrm{n} \in$ pos int var

- James Stirling

1692-1770
Scottish
analyst, industrial manager

- Abraham De Moivre

1667-1754
French-English analyst, probabilist, statistician

GG61-27

- from the theory of probability a geometrical probabilty involving π
the needle problem/theorem of Buffon
let a horizontal plane be ruled by equi-spaced parallel straight lines of distance d apart
\&
let a uniform homogeneous straight needle of length $L<d$ be dropped at random onto the plane
then
the probability p
that the needle will cross one of the lines is
$\mathrm{p}=\frac{2 \mathrm{~L}}{\pi \mathrm{~d}}$
- Georges-Louis Leclerc, Comte de Buffon

1707-1788
French
probabilist, naturalist

GG61-28

- from quantum theory
\& particle physics
π occurs in the statement of the Heisenberg indeterminacy/uncertainty principle/relations
$\Delta \mathrm{p} \Delta \mathrm{q} \geq \frac{\mathrm{h}}{4 \pi} \quad \& \Delta \mathrm{E} \Delta \mathrm{t} \geq \frac{\mathrm{h}}{4 \pi}$
where
$\mathrm{p}=$ momentum
$\mathrm{q}=$ position
$\mathrm{E}=$ energy
t = time
$\mathrm{h}=$ Planck's constant
$=$ the (elementary) quantum of action
$=$ the ratio of the energy of a photon to its frequency
$\Delta=$ the uncertainty in the measurement of
- Werner Karl Heisenberg 1901-1976
German theoretical physicist; Nobel laureate for physics (1932)

GG61-29

- π to 100 decimal places is given below; note that the first zero occurs in the 32 nd decimal place
$\pi=3$.
14159265358979323846
26433832795028841971
69399375105820974944
59230781640628620899
86280348253421170679
- π has been calculated (1999) to over two hundred six billion decimal places (206,158,430,000 more precisely);
this numerical feat provides a test for large computers and the opportunity of studying the statistcal distribution of digits
in the decimal expansion of π, a transcendental number;
there is also the strong likelihood
that techniques will be discovered
that are useful in other contexts;
it is unknown (2000)
whether π has the 'expected'
10% distribution of each digit;
so far the statistics look like it
GG61-30
- mnemonic for π to thirty-one decimal places, up to the first zero, which uses letter counts of the words

$$
\pi=3.1415926535897932384626433832795+
$$

How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics! All of thy geometry, Herr Planck, is fairly hard. You too struggle? Yes, we acquire knowledge daily. the first sentence is due to Sir James Hopwood Jeans

