Geometry Shards

\#59 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG59-1 (30)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited
\square how to number the 2^{n} - ants wh $n \in \operatorname{posint}$
Δ it is customary to denote

- halflines
- quadrants
- octants
etc
by capital Roman numerals

GG59-3
Δ the line with a cartesian coordinate system is separated by the origin into
$2^{1}=2$ halflines
according to coordinate sign as pictured \& described below:

- the line with a cartesian coordinate system

- the 2 halflines
the 1 st halfline $=\mathrm{dn}$ I
the $2 n d$ halfline $=\mathrm{dn}$ II
the pattern of coordinate sign
in the halflines
- number the halflines
from positive to negative coordinate sign

GG59-4
Δ the plane with a rectangular coordinate sytem is separated by the 2 coordinate axes into $2^{2}=4$ quadrants according to coordinate signs as pictured \& described below:

- the plane with a rectangular coordinate system

GG59-5

- the 4 quadrants
the 1st quadrant $=\mathrm{dn}$ I $\quad(++)$
the 2 nd quadrant $=$ dn II $\quad(-+)$
the 3rd quadrant $=d n$ III
(- -)
the 4th quadrant $=\mathrm{dn}$ IV (+ -)
- starting with the quadrant (+ +) number the quadrants in a counterclockwise = positive direction around the origin
Δ 3-space with a rectangular coordinate system is separated by the 3 coordinate planes into $2^{3}=8$ octants
according to coordinate signs as pictured \& described below:
- 3-space with a rectangular coordinate system (visualize the rest)

GG59-7

- the 8 octants the pattern of coordinate signs in the octants
the 1 st octant $=\mathrm{dn}$ I $\quad(+++)$
the 2 nd octant $=\mathrm{dn}$ II
$(-++)$
the 3 rd octant $=d n$ III
(--+)
the 4th octant $=\mathrm{dn}$ IV
the 5 th octant $=\mathrm{dn}$ V $\quad(++-)$
the 6th octant $=\mathrm{dn}$ VI $\quad(-+-)$
the 7 th octant $=\mathrm{dn}$ VII
(---)
the 8th octant $=\mathrm{dn}$ VIII $\quad(+--)$
- starting with the octant (+ + +)
number the octants above the xy-plane in the canonical direction,
then drop below the xy-plane
to the octant (+ + -)
which is below the octant (+ + +)
and continue to
number the octants below the xy-plane
in the canonical direction
GG59-8
Δ more generally for $2 \leq n \in \operatorname{posint}$ to pass
from the canonical sequence of the $2^{n} 2^{n}$ - ants of real n-space \mathbb{R}^{n}
to the canonical sequence of
$2^{\mathrm{n}+1} 2^{\mathrm{n}+1}$ - ants of $(\mathrm{n}+1)$ - space 泟 $^{\mathrm{n}+1}$
write down twice
the pattern of coordinate signs for 思 $^{\mathrm{n}}$
$\&$ suffix plus + to the first 2^{n} entries \& suffix minus - to the last 2^{n} entries
it is a matter of judgement in a particular instance as to the classification of points with zero coordinates ie
boundary points
of m-ants,
decreeing that a certain boundary point belongs to none or one or many m-ants
according to a special purpose

GG59-9
Δ an m-ant
which includes all of its boundary points
may be called
closed
\& designated with the use of an overbar as
$\overline{\mathrm{I}}, \overline{\mathrm{II}}, \overline{\mathrm{III}}$, etc
Δ an m-ant
which includes none of its boundary points
may be called
open
\& designated with the use of an overcircle as
$\stackrel{\mathrm{o}}{\mathrm{I}}, \stackrel{\mathrm{o}}{\mathrm{II}}, \stackrel{\mathrm{o}}{\mathrm{III}}$, etc
\square the chirality
of a 3-dimensioinal rectangular coordinate system in physical 3-space
Δ the canonical correspondence between the right/left hand
\&
the coordinate system
$=$ daf

- 1st form
pointing along
the positive
thumb ... x-axis
forefinger .. y-axis
midfinger
z-axis
or
a cyclic permutation
of the coordinate axes
x-axis
y-axis
z-axis

GG59-11

- 2nd form

pointing along the positive
thumb x-axis
forefinger \& midfinger y-axis
ring \& little fingers z-axis
or
a cyclic permutation
of the coordinate axes
x-axis
y-axisz-axis

- 3rd form
pointing

> curled fingers from the positive x-axis to the positive y-axis
(note: one can think of the curled fingers as wrapped around the z-axis in the positive rotational direction)
or
a cyclic permutation
of the coordinate axes
x-axis
y-axis
z-axis

- the coordinate system
is
right-handed
or
left-handed
$=\mathrm{df}$
the coordinare system
is in canonical correspondence with
the right hand
or
the left hand

GG59-14
Δ diagrams of
right-handed coordinate systems

GG59-15
Δ diagrams of
left-handed coordinate systems

GG59-16
Δ meanings of words

- chiral (adj)
= pr KI-ruhl
$=\mathrm{df}$ pertaining to the hand
- chirality (noun)
$=$ pr ki-RAL-uh-tee
$=\mathrm{df}$ handedness
Δ etytmology
- chiral, chirality
come from
$\chi \varepsilon \iota \rho$ (Greek)
= hand
\square a theorem on elliptic quadrilaterals
T. for a quadrilateral inscribed in an ellipse the two intersections of the two pairs of opposite sides \&
the two intersections
of the two pairs of tangents at opposite vertices are collinear
P. the proof consists in applying
a limiting case of Pascal's theorem twice

GG59-18
\square some geometric M's
Δ the two M's of plane geometry
are

- major
- minor
as in
the major/minor axis of an ellipse
Δ the three M's of solid geometry are
- major
- mean
- minor
as in
the major/mean/minor axis of an ellipsoid
\square two complementary steps:
from algebra to geometry
\&
from geometry to algebra
Δ the most critical two steps
in the history of mathematics
in recognizing the connection between
algebra \& geometry
are described below
in present-day language
\&
with the generous advantage of hindsight
Δ to repeat some standard algebraic definitions:
- the real number system
= a complete ordered field
- the cartesian plane
= the set of all ordered pairs of real numbers
- the pythagorean metric in the cartesian plane
$=$ the distance function between two points given by the formula in the pythagorean theorem viz
the distance between two ordered number pairs is the square root of the sum of the squares of the differences between the coordinates
Δ from algebra to geometry;
by 1636 Fermat \& in 1637 Descartes
made observations that lead to the statement:
the cartesian plane
equipped with the pythagorean metric
is a model of
euclidean plane geometry
Δ from geometry to algebra;
more than 260 years later in 1899
Hilbert proved the converse statement:
every model of euclidean plane geometry
is isomorphic to
the cartesian plane
equipped with the pythagorean metric
Δ the major part of Hilbert's achievement
was to find
a precise (albeit complicated) definition of euclidean plane geometry
ie
to axiomatize euclidean plane geometry completely \& exactly
and thus
to finish the task begun
in Euclid's 'Elements' ca 300 BCE

GG59-21
\square curricula
from academic/scholarly environments
long long ago \& far far away
Δ the ancient Greek Pythagoreans
regarded
Mathematics
as the study of two separate kinds of entities viz

- The Discrete
= Numbers
meaning positive integers mostly
\&
- The Continuous
= Magnitudes
in geometric objects
involving
lines \& their lengths, plane regions \& their areas,
solids \& their volumes

GG59-22
Δ according to Pythagorean doctrine
a mathematical entity can be
at rest
or
in motion;
whence

- Arithmetic
= the study of
The Discrete at Rest
- Music
= the study of
The Discrete in Motion
- Geometry
= the study of
The Continuous at Rest
- Astronomy
= the study of
The Continuous in Motion

GG59-23
Δ the Pythagorean doctrine of
The Quadrivium
which consists of the four subjects
Arithmetic
Music
Geometry
Astronomy
may be summarized by
The Quadrivium Tree
which is rooted in Mathematics
\&
which has a double two-fold branching

GG59-24
Δ The Seven Liberal Arts
formed
the curriculum in medieval universities
which consisted of
the upper division

- The Quadrivium:

Arithmetic
Music
Geometry
Astronomy
which was the four-fold way to knowledge
plus
the lower division

- The Trivium:

Grammar
Rhetoric
Dialectics = Logic
which was the three-fold way to eloquence

GG59-25

Δ etymology

- quadrivium (Latin)
= meeting of four ways
= four-way crossroads from
quadri- (Latin)
= four
$+$
via (Latin)
= road
- trivium (Latin)
= meeting of three ways
= three-way crossroads
from
tri- (Latin)
= three
$+$
via (Latin)
= road
Δ bionote
Martianus Capella,
a Latin writer of the 5th century CE
from northern Africa (probably Carthage),
originally conceived of
The Seven Liberal Arts
as the depository \& summary of Roman culture after the Fall of Rome
that (is usually said to have) occurred in 476 CE

GG59-27
\square the music of the spheres
is
an ancient Greek doctrine
that may have arisen in the following way
Δ Pythagoras observed that
strings in motion produce sounds
according to their lengths;
we now recognize that
a vibrating string's length
is inversely proportional to
its rate of motion $=$ number of vibrations per second
\& that determines its tone

- the heavenly bodies are in motion
\& therefore produce sounds;
since all things in nature must harmonize,
the heavenly bodies produce
harmony/music
which, however, is too exquisite
to be heard by human ears
- each heavenly body
is understood to be fixed upon
a large invisible sphere centered at the Earth;
the heavenly bodies then move
because the ferrying spheres
carry them around the Earth
Δ thus is produced
the music of the spheres
where the word 'spheres' refers to
the ferrying spheres
or to
the heavenly bodies themselves
Δ Shakespeare described the music of the spheres in his play
The Merchant of Venice
Act 5 Scene 1 lines 58-62
where the speaker Lorenzo is describing
a chart of the heavens
... Look how the flow of heaven
Is thick inlaid with patens of bright gold.
There's not the smallest orb which thou behold'st
But in his motion like an angel sings, Still choiring to the young-eyed cherubins.
Δ bioline
Pythagoras of Samos
ca 580 - ca 500 BCE
Greek
geometer, philosopher, founder of the Pythagorean Society
Δ bioline
William Shakespeare
1564-1616
English
dramatist \& poet;
often considered to be
the greatest writer of all time
Δ note the presence of powers of 2
in Shakespeare's vital dates;
it is a good mnemonic

GG59-30

