Math Snatches \& Patches

\#58 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG58-1 (34)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG58-2

D. asymptotic equality

let

- $\mathrm{D} \subset$ 思
- D contains a sequence going to $\infty=+\infty$
- $\mathrm{f}, \mathrm{g}: \mathrm{D} \rightarrow$ 足 $\operatorname{st} \mathrm{g}(\mathrm{x}) \neq 0$ for $\mathrm{x} \in \mathrm{D}$
- $\mathrm{x} \in \operatorname{var} \mathrm{D}$
then
- $f(x)$ is asymptotically equal to $g(x)$ at infinity
$=f(x)$ asymptotically equals $g(x)$ at infinity
$=f(x)$ and $g(x)$ are asymptotically equal at infinity
$=f(x)$ is asymptotic to $g(x)$ as x goes to infinity
$=f(x)$ and $g(x)$ are asymptotic as x goes to infinity
$=f(x)$ is asymptotic to $g(x)$ as $x \rightarrow \infty$
$=\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are asymptotic as $\mathrm{x} \rightarrow \infty$
$={ }_{d n} f(x) \sim g(x)$ as $x \rightarrow \infty$
$={ }_{\mathrm{df}} \exists \lim _{\mathrm{x} \rightarrow \infty} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})}=1$
D. Landau's big - oh \& little - oh notation let
- D \subset 皿
- D contains a sequence going to $\infty=+\infty$
- $\mathrm{f}, \mathrm{g}: \mathrm{D} \rightarrow$ R $\operatorname{st} \mathrm{g}(\mathrm{x}) \neq 0$ for $\mathrm{x} \in \mathrm{D}$
- x $\in \operatorname{var} D$
then
- $f(x)$ equals / is big - oh of $g(x)$
as x goes to infinity
$={ }_{\mathrm{dn}} \mathrm{f}(\mathrm{x})=\mathrm{O}(\mathrm{g}(\mathrm{x}))$ as $\mathrm{x} \rightarrow \infty$
$={ }_{d f}\left|\frac{f(x)}{g(x)}\right| \in$ bounded for x sufficently large
- $f(x)$ equals / is little - oh of $g(x)$ as x goes to infinity
$={ }_{\mathrm{dn}} \mathrm{f}(\mathrm{x})=\mathrm{o}(\mathrm{g}(\mathrm{x}))$ as $\mathrm{x} \rightarrow \infty$
$={ }_{\mathrm{df}} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{g}(\mathrm{x})} \rightarrow 0$ as $\mathrm{x} \rightarrow \infty$
note: some writers have ' zero' in place of ' oh' GG58-4
\square the Bell numbers
- the nth Bell number ($\mathrm{n} \in$ nonneg int)
$=_{\mathrm{dn}} \mathrm{B}(\mathrm{n})$ wh $\mathrm{B} \leftarrow$ Bell
$=_{\mathrm{df}}$ the number of partitions
of a set with cardinal n
- the Bell numbers $\mathrm{B}(\mathrm{n})(0 \leq \mathrm{n} \leq 10)$
$\mathrm{B}(0)=1$
$\mathrm{B}(1)=1$
$B(2)=2$
$B(3)=5$
$B(4)=15$
$B(5)=52$
$B(6)=203$
$B(7)=877$
$B(8)=4140$
$\mathrm{B}(9)=21147$
$B(10)=115975$

GG58-5

- how to construct
the triangle generating Bell numbers
$=$ the Bell triangle
there are four rules:
(1) rows begin at the left - hand margin
(2) the end of one row is the beginning of the next row
(3) once another row is started, it is continued by repetitive use of the pattern a
$+$
$\mathrm{b} \rightarrow \mathrm{c}$
until its application
is no longer possible
(4) the first row consists of the single entry 1
- the Bell triangle

1
12
235
$\begin{array}{llll}5 & 7 & 10 & 15\end{array}$
$\begin{array}{lllll}15 & 20 & 27 & 37 & 52\end{array}$
$\begin{array}{llllll}52 & 67 & 87 & 114 & 151 & 203\end{array}$
$\begin{array}{lllllll}203 & 255 & 322 & 409 & 523 & 674 & 877\end{array}$

GG58-7

- a generating function for the Bell numbers

$$
\begin{aligned}
& \exp \exp x=e^{e^{x}} \\
& =e \sum_{n=0}^{\infty} B(n) \frac{x^{n}}{n!} \\
& =e\left(1+\frac{1 x}{1!}+\frac{2 x^{2}}{2!}+\frac{5 x^{3}}{3!}+\frac{15 x^{4}}{4!}+\cdots\right)
\end{aligned}
$$

- also note
$\sum_{n=0}^{\infty} \frac{n^{k}}{n!}=B(k) e \quad(k \in$ nonneg int $)$
- bioline

Eric Temple Bell
1883-1960
Scottish-American
number theorist, historian of mathematics;
wrote the books
Men of Mathematics (1937)
The Development of Mathematics (1940)
Mathematics, Queen and Servant of Science (1951)
The Last Problem (1961);
under the pen name of John Taine
he wrote many books of science fiction including
The Time Stream (1946)

GG58-9
\square sizes of sets
let A be a set
then in each item tsape

- A is the zero-element set

A is the empty set
A is empty
$\mathrm{A}=\varnothing$
crd $A=0$

- A is a one-element set
A is a single element set
A is a singleton $\operatorname{crd} A=1$
- A is a two-element set
A is a double element set
A is a doubleton
$\operatorname{crd} \mathrm{A}=2$
- A is a three-element set
A is a triple element set
A is a tripleton
crd $\mathrm{A}=3$
- A is an n-element set ($n \in$ nonneg int) $\operatorname{crd} \mathrm{A}=\mathrm{n}$
- A is a nonempty set

A is nonempty
$A \neq \varnothing$
crd $A \geq 1$

- A is a many element set
A is a multiple element set
A is a pluralton
A is plural
crd $A \geq 2$
- A has at least n elements ($n \in$ nonneg int) $\operatorname{crd} \mathrm{A} \geq \mathrm{n}$
- A has at most n elements ($n \in$ nonneg int) crd $\mathrm{A} \leq \mathrm{n}$
- A has exactly/precisely n elements ($\mathrm{n} \in$ nonneg int) $\operatorname{crd} \mathrm{A}=\mathrm{n}$
- A is a finite set
A is finite
A has only finitely many elements crd $\mathrm{A}<\boldsymbol{\aleph}_{0}$
- A is an infinite set
A is infinite
A has infinitely many elements
$\operatorname{crd} \mathrm{A} \geq \boldsymbol{\aleph}_{0}$
- A is a countable set
A is countable
A has only countably many elements $\operatorname{crd} \mathrm{A} \leq \boldsymbol{\aleph}_{0}$
- A is an uncountable set
A is uncountable
A has uncountably many elements
$\operatorname{crd} \mathrm{A}>\boldsymbol{\aleph}_{0}$
$\operatorname{crd} \mathrm{A} \geq \boldsymbol{\aleph}_{1}$
- A is a countably infinite set
A is a denumerable set
A is countably infinite
A is denumerable $\operatorname{crd} \mathrm{A}=\aleph_{0}$
- A has the cardinal/power of the continuum
$\operatorname{crd} \mathrm{A}=\operatorname{crd} \mathbb{R}^{\circ}=2^{\mathrm{K}_{0}}=\mathbb{C}$
\square circled letters
- the circled sign @ comes from
business/commerce/finance
where it means (and may be read)
at
each
at the price of ... each
and the like,
these paraphrases all meaning
pretty much the same thing;
eg
5 apples @\$2 = \$10
means
five apples at two dollars each
costs ten dollars altogether
- in recent times the circled sign @ is used in an e-mail address as
recipient@location.domain
and is read 'at' in that context;
it was first used for this purpose in 1971 by
the inventor of e-mail Ray Tomlinson
in the first e-mail message;
in his words:
'The @ sign seemed to make sense.
I used the @ sign to indicate that the user was 'at' some other host rather than being local.' GG58-13
- the mark @
consists of a lower case letter a
with a circumscribing circle (almost)
and may be called
the circled a
where a in this context comes from
the initial letter of 'at';
the mark @
may be made cursively in a lovely manner
and this manner is reproduced in this typefont, I note;
the symbol @ and this usage is likely centuries old;
I could not immediately find out
its first printed occurrence
but I would guess it occurs first in some textbook for business arithmetic, certainly no later than the early19th century, I should think

- other circled letters occur in general use;

eg
circled c
\forall
means 'copyright'
\&
circled R
\forall
means 'registered'

- some circled math signs occur from time to time;
eg
circled plus +
\oplus
read 'oh plus'
\&
circled times \times
\otimes
read 'oh times'
may be used to denote certain binary operations which are called addition \& multiplication

GG58-15
\square names for the sign ∞

- lazy eight = the figure eight lying on its side
- love knot = a looped cord tying a couple together by enclosing each
- twisted ouroboros = a twisted serpent biting/swallowing its tail
- lemniscate
- infinity
- infinity sign
note: in 1655
the English mathematician John Wallis used the sign ∞ to mean infinity;
∞ is an ancient Roman sign for 1000;
its choice was possibly influenced by
its resemblance to little omega ω, the lowercase form of the last letter of the Greek alphabet
\square a word contributing to the origin of the word mathematics
- $\mu \alpha \vartheta \eta \mu \alpha$ (Greek)
$=\mu \alpha \vartheta \eta \sigma \iota \varsigma$ (Greek)
= mathesis (Latin)
= all knowledge
\square to subitize
$=$ pr tuh SOO-bit-tize
$=$ ri subito (Latin) = suddenly, immediately
= df to perceive at a glance
the number of items present without actually counting or grouping them; ordinarily this is possible for up to say five items
where
the three equaters
have the meanings:
= pr means is pronounced
= ri means is rooted in
$=\mathrm{df}$ means is defined to mean
\square a fanciful derivation of the word radian in successive abbreviations
- the measure of the central angle of a circle subtended by an arc whose length is the radius of the circle
= angle subtended by radius
= radial angle
= radi an
= radian
- the word radian was introduced in 1873
by James Thomson, the brother of Lord Kelvin; I do not know his thoughts at the time

GG58-19
\square synonymous words \& phrases
therefore
hence
consequently
thus
whence
ergo (Latin)
as a conclusion
as a consequence
as a result
it is a conclusion that
it is a consequence that
it is a result that
it follows that
there follows
we conclude that
we draw the conclusion that
etc

GG58-20
\square understanding \& communicating mathematics

- i do not believe that
the understanding
of a given piece of mathematics by a given person
can be fully described \& accurately measured
by a simple percentage from 0% to 100%;
by 'understanding mathematics' i do not mean memorizing theorems, proofs, and examples, nor solving designed problems, nor performing simple algorithms;
i have in mind something that likely includes those things but is much more;
i believe that i can more or less recognize it but i am hard put to it to describe it adequately;
research in the topic would be evidence
of the 'understanding' of the topic;
on the basis of my seven and a fraction decades of learning/teaching/reading/hearing/talking/researching mathematics i am inclined to think that the understanding of mathematics is peculiar to each individual;
as to how someone understands mathematics
varies from person to person;
even among experts it is variable;
not just in quantity
but in quality also

GG58-21

- different people
must understand mathematics
in different ways;
but how to classify these ways
\& how to recognize
a particular way in a particular person remain mysteries
- ¿ is there just one 'correct' understanding of mathematics ?
i doubt it;
but to be sure 'correct understandings'
should be sought
among the experts \& not the tyros;
¿ can 'correct understandings' be linerarly ordered in measure of merit?

GG58-22

- of course
there is the question
¿ is there an essential distinction between mathematics
\&
the understanding of mathematcs ?
i am inclined to believe there is indeed an essential distinction; consider that
'understanding mathematics'
is attached to one person
but
'mathematics'
is not
- i also recognize that
a person may have a clear understanding of mathematics \&
yet be unable to clearly communicate that understanding;
i guess all students \& teachers of math
know this in very many minor ways;
but it is also true in major ways;
i think that i can recognize
highly nontrivial examples in the history of mathematics
where a mathematician saw clearly
something of great importance
but the language/theory had not yet been developed for an exact expression of that piece of mathematics;
this is evidence that
mathematics is helped by language
but
mathematics is not to be identified with language;
to be sure mathematicians are
tremendously dependent upon both
natural language
\&
especially devised mathematical symbolism;
without either
mathematicians would get just about nowhere

GG58-24

- as a practical matter
a natural language such as English
is necessary for mathematics
in recorded expression \& in communication
if for no less
- ¿ is there a natural language that is especially appropriate for mathematics ?
- ¿ for native speakers
is it just as easy
to think \& understand math in German as it is in English say ?
- i have been told that a person always does arithmetic in their native language;
it is much easier that way
likely because
the simple algorithms are learned at a young age in the native language
- i have had the experience of making some remark in the course of an explanation
to an undergraduate student
\& had it seized upon by the student
as the magic incantation
for understanding some particular point;
they exclaimed
'So that's what it means !'
or even
'Why didn't you say so before?';
my own attitude to the remark was likely to be that the remark was painfully evident \& not especially insightful anyway; yet many students must feel that math teachers keep all that math secret by not saying just the right word for them to understand it all
- again
i have had the experience of a student with a high grade \& who could 'work the problems' saying a good deal of nonsense
\& then announcing that what they just said makes everything clear
- it is abundantly clear to me that whatever understanding of math these students may have had, it differed sharply from my own; of course
it could be argued with some force that their understanding was flawed \& partial; it is a fact that I never faced this kind of situation with my graduate students; but then their thinking was evidently closer to my own
\square randomness
- the question of defining
random/randomness
purely mathematically remains largely open
- particular notions of random objects are available in abundance
eg
random event
random number
random sample
random sequence
random variable
random walk
etc;
the task is to determine
the distinguishing \& unifying mathematical characteristic underlying them all, if any
- ¿ is randomness capable of being measured ?
¿ physically?
¿ mathematically ?
- randomness
may not be just two-valued (yes or no)
but subject to measurement
by a real number between 0 and 1 say
- presumably
the notion of
randomness
is tied in with
the notion of
probabilistic phenomenon
\&
the mathematical clarification of one might be equivalent to that of the other
- ¿ does there exist a mathematical definition
of a probabilistic phenomenon rather than a statistical or philosophical one ?
\square remembering dates
accidental number patterns may help in remembering biographical \& historical data; here are some examples
- Euclid
fl ca 300 BCE
mnemonic:
E backwards looks like 3;
¿ how about the zero zero ?
i nothing, just nothing, to remember !
- Gauss

1777-1855
mnemonic:
triple prime 7 to double prime 5, Gauss being great on prime numbers; in 'great Gauss'
Gg is the 7th letter of the alphabet
\&
each word has 5 letters

- Klein

1849-1925
mnemonic:
two squares of primes
$7^{2}=49 \& 5^{2}=25$

- Leibniz

1646-1716
mnemonic:
look at all the powers of 2 ;
begins \& ends with 16 ;
64 is 'inside' 16
\&
71 is 'inside' 16;
646 has internal symmetry

- Newton

1642-1727
mnemonic:
look at the powers of 2 \& a power of 3 ;
begins with a power of $2 \&$ ends with the cube of 3 ;
727 has internal symmetry;
Newton was born 4 years before Leibniz
\& died 11 years after Leibniz

- Newton's 'Principia
was published in 1687
mnemonic:
Newton's age was 45,
giving consecutive integers
4, 5, 6, 7, 8
- Shakespeare

1564-1616
mnemonic:
look at all the powers of 2 ;
repeat 16, 16;
by long-established tradition
Shakespeare's birthday
is celebrated on 23 April;
his exact birthday is not known for certain;
note the consecutive digits 2, 3, 4
where 4 represents April,
the 4th month of the year;
he died on the same day 23 April
in 1616

- the English mathematician

Augustus De Morgan,
who lived entirely in the 19th century,
said that he was
x years old in the year x^{2}
whence $x=43$
\&
he was born in the year
$x^{2}-x=1849-43=1806$;
he died in 1871;
it was said that he 'read algebra like a novel'

- here are two ways of composing an elaborate mnemonic for vital dates;
eg consider
Newton
1642-1727
(1) the centuries 16- \& 17-
are likely no problem to remember;
for the tens \& units,
take two words
with the number positions of the initial letters in the alphabet
specifying the birth date
\&
with the numbers of letters in the words
specifying the death date
eg
'do benefit'
as from
'we do benefit from Newton's mathematics'

GG58-33
(2) compose an appropriate phrase such that the letter-counts of the consecutive words gives
the consecutive digits of the vital dates
eg
a genius that is
a benefit to science
brief comment:
sometimes it seems easier just
to remember a few numbers

GG58-34

