A Short Series of Serious Series Six-Packs

\#56 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG56-1 (51)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG56-2
\square we consider various power series
in the real variable x with real coefficients; let S be such a series; we describe how to methodically alter S in order to produce many power series in the real variable x with real coefficients that are related to S ; this leads to the notions of the three-pack of S, the six-pack of S, the triple six-pack of S,
etc
in a partial classification scheme for power series; this scheme also evidently applies to other kinds of series
\& to functons defined by series

- let
$\mathrm{S}=\mathrm{df}$ a power series in the real variable x with real coefficients
$\mathrm{S}=\mathrm{cl}$ the admissible series

GG56-3

- the following notation \& terminology is adopted:
$\mathrm{ES}=$ the series of the terms of S containing the even powers of x
$=$ the even-power admissible series
$\mathrm{OS}=$ the series of the terms of S containing the odd powers of x
$=$ the odd-power admissible series
$\mathrm{AS}=$ the series resulting from the change of sign of every other term of S
$=$ the alternating admissible series
$\mathrm{DS}=$ the tbt derivative of S wrt x
$=$ the differentiated admissible series
IS = the tbt integral of S from 0 to x
$=$ the integrated admissible series
- the three-pack of S
$=\mathrm{df}$ the following 3 series:
$\mathrm{S}=$ the admissible series
$\mathrm{ES}=$ the even-power admissible series
$\mathrm{OS}=$ the odd-power admissible series
- the six-pack of S
$=\mathrm{df}$ the following 6 series:
$\mathrm{S}=$ the admissible series
$\mathrm{ES}=$ the even-power admissible series
$\mathrm{OS}=$ the odd-power admissible series
AS = the alternating admissible series
AES $=$ the alternating even-power admissible series
AOS $=$ the alternating odd-power admissible series

GG56-5

- the triple six-pack of S
$=\mathrm{df}$ the following 18 series:
$\mathrm{S}=$ the admissible series
$\mathrm{ES}=$ the even-power admissible series
$\mathrm{OS}=$ the odd-power admissible series
AS = the alternating admissible series
AES $=$ the alternating even-power admissible series
AOS = the alternating odd-power admissible series
$\mathrm{DS}=$ the differentiated admissible series
DES $=$ the differentiated even-power admissible series
DOS $=$ the differentiated odd-power admissible series

DAS $=$ the differentiated alternating admissible series

DAES $=$ the differentiated alternating even-power admissible series
DAOS $=$ the differentiated alternating odd-power admissible series

IS = the integrated admissible series
IES = the integrated even-power admissible series
IOS $=$ the integrated odd-power admissible series
IAS $=$ the integrated alternating admissible series
IAES $=$ the integrated alternating even-power admissible series
IAOS $=$ the integrated alternating odd-power admissible series
\square the geometric power series
\& its triple six - pack

- S
$=$ the monic geometric power series with ratio x
$=1+x+x^{2}+x^{3}+\cdots$
$=\sum_{n=0}^{\infty} x^{n}$
$=\frac{1}{1-x}$

IC: $-1<\mathrm{x}<1$
note: this series may be regarded as the simplest nontrivial power series

- ES
$=$ the monic geometric power series with ratio x^{2}
$=1+x^{2}+x^{4}+x^{6}+\cdots$
$=\sum_{n=0}^{\infty} x^{2 n}$
$=\frac{1}{1-\mathrm{x}^{2}}$

IC: $-1<x<1$

- OS

$=$ the x - leading geometric power series with ratio x^{2}
$=\mathrm{x}+\mathrm{x}^{3}+\mathrm{x}^{5}+\mathrm{x}^{7}+\cdots$
$=\sum_{n=0}^{\infty} x^{2 n+1}$
$=\frac{\mathrm{x}}{1-\mathrm{x}^{2}}$

IC: $-1<x<1$

GG56-9

- AS
$=$ the alternating monic geometric power series in x
$=$ the monic geometric power series with ratio -x
$=1-\mathrm{x}+\mathrm{x}^{2}-\mathrm{x}^{3}+\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n} x^{n}$
$=\frac{1}{1+\mathrm{x}}$

IC: $-1<\mathrm{x}<1$

GG56-10

- AES

$$
\begin{aligned}
& =\text { the monic geometric power series with ratio }-x^{2} \\
& =1-x^{2}+x^{4}-x^{6}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n} \\
& =\frac{1}{1+x^{2}}
\end{aligned}
$$

$$
\text { IC: }-1<x<1
$$

- AOS

$$
\begin{aligned}
& =\text { the } x-\text { leading geometric power series with ratio }-x^{2} \\
& =x-x^{3}+x^{5}-x^{7}+\cdots \\
& =\sum_{n=0}^{\infty}(-1)^{n} x^{2 n+1} \\
& =\frac{x}{1+x^{2}}
\end{aligned}
$$

$$
\text { IC: }-1<x<1
$$

- DS
$=1+2 \mathrm{x}+3 \mathrm{x}^{2}+4 \mathrm{x}^{3} \ldots$
$=\sum_{n=0}^{\infty}(n+1) x^{n}$
$=\frac{1}{(1-x)^{2}}$

IC: $-1<\mathrm{x}<1$

GG56-13

- DES
$=2 \mathrm{x}+4 \mathrm{x}^{3}+6 \mathrm{x}^{5}+8 \mathrm{x}^{7}+\cdots$
$=\sum_{n=0}^{\infty} 2(n+1) x^{2 n+1}$
$=\frac{2 \mathrm{x}}{\left(1-\mathrm{x}^{2}\right)^{2}}$

IC: $-1<x<1$

GG56-14

- DOS
$=1+3 \mathrm{x}^{2}+5 \mathrm{x}^{4}+7 \mathrm{x}^{6}+\cdots$
$=\sum_{n=0}^{\infty}(2 n+1) x^{2 n}$
$=\frac{1+\mathrm{x}^{2}}{\left(1-\mathrm{x}^{2}\right)^{2}}$

IC: $-1<x<1$

GG56-15

- DAS
$=1-2 \mathrm{x}+3 \mathrm{x}^{2}-4 \mathrm{x}^{4}+\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n}(n+1) x^{n}$
$=\frac{1}{(1+x)^{2}}$

IC: $-1<x<1$
note: the bar over the D
is suggestive of a minus sign; multiply the series DAS tbt with -1 to remove the initial minus sign

- $\overline{\mathrm{D}} \mathrm{AES}$

$=2 \mathrm{x}-4 \mathrm{x}^{3}+6 \mathrm{x}^{5}-8 \mathrm{x}^{7}+\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n} 2(n+1) x^{2 n+1}$
$=\frac{2 x}{\left(1+x^{2}\right)^{2}}$

IC: $-1<x<1$

GG56-17

- DAOS
$=1-3 x^{2}+5 x^{4}-7 x^{6}+\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n}(2 n+1) x^{2 n}$
$=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}$

IC: $-1<x<1$

GG56-18

- IS
$=$ the harmonic power series in x
$=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots$
$=\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
$=\log \frac{1}{1-\mathrm{x}}$

IC: $-1 \leq \mathrm{x}<1$

GG56-19

- IES
$=$ the odd harmonic power series in x
$=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7} \cdots$
$=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}$
$=\log \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}$
$=\tanh ^{-1} \mathrm{x}$

IC: $-1<\mathrm{x}<1$

GG56-20

- IOS
$=$ the even harmonic power series in x
$=\frac{x^{2}}{2}+\frac{\mathrm{x}^{4}}{4}+\frac{\mathrm{x}^{6}}{6}+\frac{\mathrm{x}^{8}}{8}+\cdots$
$=\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{x}^{2 \mathrm{n}}}{2 \mathrm{n}}$
$=\log \frac{1}{\sqrt{1-x^{2}}}$

IC: $-1<\mathrm{x}<1$

GG56-21

- IAS
$=$ the alternating harmonic power series in x
$=$ Mercator' s series
$=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$
$=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$
$=\log (1+x)$

IC: $-1<\mathrm{x} \leq 1$

GG56-22

- IAES
$=$ the alternating odd harmonic power series in x
$=$ Gregory' s series
$=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}$
$=\tan ^{-1} \mathrm{x}(\mathrm{pv})$

IC: $-1<\mathrm{x} \leq 1$

- IAOS
$=$ the alternating even harmonic power series in x
$=\frac{x^{2}}{2}-\frac{x^{4}}{4}+\frac{x^{6}}{6}-\frac{x^{8}}{8}+\cdots$
$=\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{x^{2 \mathrm{n}}}{2 \mathrm{n}}$
$=\log \sqrt{1+x^{2}}$

IC: $-1 \leq \mathrm{x} \leq 1$
\square the harmonic power series \& its six-pack
-S
$=$ the harmonic power series in x
$=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\cdots$
$=\sum_{n=1}^{\infty} \frac{x^{\prime \prime}}{n}$
$=\log \frac{1}{1-x}$

IC: $-1 \leq \mathrm{x}<1$

GG56-25

- OS

$=$ the odd harmonic power series in x
$=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7} \cdots$
$=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1}$
$=\log \sqrt{\frac{1+\mathrm{x}}{1-\mathrm{x}}}$
$=\tanh ^{-1} \mathrm{x}$

IC: $-1<\mathrm{x}<1$

GG56-26

- ES
$=$ the even harmonic power series in x
$=\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\frac{x^{8}}{8}+\cdots$
$=\sum_{\mathrm{n}=1}^{\infty} \frac{\mathrm{x}^{2 \mathrm{n}}}{2 \mathrm{n}}$
$=\log \frac{1}{\sqrt{1-\mathrm{x}^{2}}}$

IC: $-1<x<1$

GG56-27

- AS
$=$ the alternating harmonic power series in x
$=$ Mercator's series
$=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots$
$=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{x^{n}}{n}$
$=\log (1+x)$

IC: $-1<\mathrm{x} \leq 1$

GG56-28

- AOS
$=$ the alternating odd harmonic power series in x
$=$ Gregory' s series
$=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$
$=\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \frac{\mathrm{x}^{2 \mathrm{n}+1}}{2 \mathrm{n}+1}$
$=\tan ^{-1} \mathrm{x}(\mathrm{pv})$

IC: $-1<\mathrm{x} \leq 1$

GG56-29

- AES

$=$ the alternating even harmonic power series in x
$=\frac{x^{2}}{2}-\frac{x^{4}}{4}+\frac{x^{6}}{6}-\frac{x^{8}}{8}+\cdots$
$=\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{\mathrm{x}^{2 \mathrm{n}}}{2 \mathrm{n}}$
$=\log \sqrt{1+x^{2}}$

IC: $-1 \leq \mathrm{x} \leq 1$
\square the factorial power series \& its six - pack
-S
= the factorial power series in x
$=$ the exponential series in x
$=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
$=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
$=e^{x}$

IC: $-\infty<\mathrm{x}<\infty$

GG56-31

- ES
= the even factorial power series in x
$=$ the hyperbolic cosine series in x
$=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots$
$=\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!}$
$=\underline{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}$
2
$=\cosh \mathrm{x}$

IC: $-\infty<x<\infty$

- OS

= the odd factorial power series in x
$=$ the hyperbolic sine series in x
$=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots$
$=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!}$
$=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}$
2
$=\sinh \mathrm{x}$

IC: $-\infty<\mathrm{x}<\infty$

- AS
$=$ the alternating factorial power series in x
$=$ the alternating exponential series in x
$=1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{n!}$
$=\mathrm{e}^{-\mathrm{x}}$

IC: $-\infty<x<\infty$

- AES
$=$ the alternating even factorial power series in x
$=$ the cosine series in x
$=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
$=\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \frac{\mathrm{x}^{2 \mathrm{n}}}{(2 \mathrm{n})!}$
$=\frac{e^{i x}+e^{-i x}}{2}$
2
$=\cos \mathrm{x}$

IC: $-\infty<x<\infty$

- AOS
= the alternating odd factorial power series in x
$=$ the sine series in x
$=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$
$=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}$
$=\underline{\mathrm{e}^{\mathrm{ix}}-\mathrm{e}^{-\mathrm{ix}}}$
2 i
$=\sin x$

IC: $-\infty<x<\infty$
\square every real function $\mathrm{f}(\mathrm{x})$
with a power series expansion in x
say
$f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots=\sum_{n=0}^{\infty} a_{n} x^{n}$
with a plural IC
can be decomposed into
the sum of
an even function
$g(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}+a_{6} x^{6}+\cdots=\sum_{n=0}^{\infty} a_{2 n} x^{2 n}$
and
an odd function
$h(x)=a_{1} x+a_{3} x^{3}+a_{5} x^{5}+a_{7} x^{7}+\cdots=\sum_{n=0}^{\infty} a_{2 n+1} x^{2 n+1}$

GG56-37
whence
$\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x})+\mathrm{h}(\mathrm{x})$
\&
$g(x)=\frac{1}{2}[f(x)+f(-x)]$
is called the even part of $f(x)$
\&
$h(x)=\frac{1}{2}[f(x)-f(-x)]$
is called the odd part of $f(x)$
\&
the three - pack of $f(x)$
consists of
$\mathrm{f}(\mathrm{x}), \mathrm{g}(\mathrm{x}), \mathrm{h}(\mathrm{x})$
note: the above equations evidently hold even for a function without a series development
if we take
$S=f(x)$
then
$\mathrm{ES}=\mathrm{g}(\mathrm{x})$
$\mathrm{OS}=\mathrm{h}(\mathrm{x})$
AS $=f(-x)$
$\mathrm{AES}=\mathrm{g}(\mathrm{ix})$
AOS $=\frac{1}{i} h(i x)$
we illustrate the even - odd decomposition of a function and its series implications by two examples, one in the real field $\&$ one in the complex field
the real exponential function
$e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$
has
the hyperbolic cosine
$\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots$
as even part
\&
the hyperbolic sine
$\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots$
as odd part
\&
the even - odd decomposition
$\mathrm{e}^{\mathrm{x}}=\cosh \mathrm{x}+\sinh \mathrm{x}$
(Lambert' s formula)

GG56-40
the complex - valued exponential function
$e^{i x}=1+i \frac{x}{1!}-\frac{x^{2}}{2!}-i \frac{x^{3}}{3!}+\cdots$
has
the trig cosine
$\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$
as even part
\&
the trig sine times i
$i \sin x=i\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\right)$
as odd part
\&
the even - odd decomposition
$e^{i x}=\cos x+i \sin x$
(Euler' s formula)

GG56-41
\square the above even - odd decompositions also hold for the corresponding complex functions
viz
$\mathrm{e}^{\mathrm{z}}=\cosh \mathrm{z}+\sinh \mathrm{z}$ (Lambert's formula)
$\mathrm{e}^{\mathrm{iz}}=\cos \mathrm{z}+\mathrm{i} \sin \mathrm{z}$ (Euler's formula)
wh $\mathrm{z} \in$ complex var
the functions being defined by
the replacement of x by z
in the real series developments

GG56-42
\square the considerations
leading to the the notion of the six-pack
of a real power series in x
or
of a function so defined
may be extended to
a series which has any functions
as terms of the series
or
of a function so defined;
here the attention is directed to
the number of the term in the series
rather than the exponent of x ; an example starting with the zeta function is given below

GG56-43
\square the zeta function \& its six-pack

- the zeta function of Riemann
$=$ the ζ-function of Riemann
$=$ the Riemann zeta function
$=$ the Riemann ζ-function
$=$ Riemann's zeta function
$=$ Riemann's ζ-function
$=$ the zeta function
$=$ the ζ-function
$=_{\mathrm{dn}} \zeta(\mathrm{x})$
$=_{r d}$ zeta (of) x
$={ }_{\text {df }} 1+\frac{1}{2^{x}}+\frac{1}{3^{x}}+\frac{1}{4^{x}}+\cdots$
$=1+2^{-x}+3^{-x}+4^{-x}+\cdots$
$=\sum_{\mathrm{n}=1}^{\infty} \frac{1}{\mathrm{n}^{\mathrm{x}}}$
$=\sum_{\text {min }}^{n->}$

IC: $1<x<\infty$

- the lambda function
$=$ the λ - function
$={ }_{\mathrm{dn}} \lambda(\mathrm{x})$
$=_{\text {rd }}$ lambda (of) x
$={ }_{\mathrm{df}} 1+\frac{1}{3^{\mathrm{x}}}+\frac{1}{5^{\mathrm{x}}}+\frac{1}{7^{\mathrm{x}}}+\cdots$
$=1+3^{-x}+5^{-x}+7^{-x}+\cdots$
$=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{x}}$
$=\sum_{n=0}^{\infty}(2 n+1)^{-x}$

IC: $1<x<\infty$

- the kappa function
$=$ the κ - function
$=_{\mathrm{dn}} \kappa(\mathrm{x})$
$=_{\text {rd }}$ kappa (of) x
$=_{d f} \frac{1}{2^{x}}+\frac{1}{4^{x}}+\frac{1}{6^{x}}+\frac{1}{8^{x}}+\cdots$
$=2^{-x}+4^{-x}+6^{-x}+8^{-x}+\cdots$
$=\sum_{n=1}^{\infty} \frac{1}{(2 n)^{x}}$
$=\sum_{n=1}^{\infty}(2 n)^{-x}$

IC: $1<x<\infty$

- the eta function
$=$ the η-function
$={ }_{d n} \eta(x)$
$={ }_{\text {rd }}$ eta (of) x
$={ }_{\mathrm{df}} 1-\frac{1}{2^{\mathrm{x}}}+\frac{1}{3^{\mathrm{x}}}-\frac{1}{4^{\mathrm{x}}}+\cdots$
$=1-2^{-x}+3^{-x}-4^{-x}+\cdots$
$=\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{\mathrm{n}^{\mathrm{x}}}$
$=\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \mathrm{n}^{-\mathrm{x}}$

IC: $0<x<\infty$

GG56-47

- the beta function
$=$ the β - function
$={ }_{\mathrm{dn}} \beta(\mathrm{x})$
$={ }_{r d}$ beta (of) x
$={ }_{\mathrm{df}} 1-\frac{1}{3^{\mathrm{x}}}+\frac{1}{5^{\mathrm{x}}}-\frac{1}{7^{\mathrm{x}}}+\cdots$
$=1-3^{-x}+5^{-x}-7^{-x}+\cdots$
$=\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}} \frac{1}{(2 \mathrm{n}+1)^{\mathrm{x}}}$
$=\sum_{\mathrm{n}=0}^{\infty}(-1)^{\mathrm{n}}(2 \mathrm{n}+1)^{-\mathrm{x}}$

IC: $0<x<\infty$

- the alpha function
$=$ the α-function
$={ }_{\mathrm{dn}} \quad \alpha(\mathrm{x})$
$={ }_{r d}$ alpha (of) x
$={ }_{\mathrm{df}} \frac{1}{2^{\mathrm{x}}}-\frac{1}{4^{\mathrm{x}}}+\frac{1}{6^{\mathrm{x}}}-\frac{1}{8^{\mathrm{x}}}+\cdots$
$=2^{-x}-4^{-x}+6^{-x}-8^{-x}+\cdots$
$=\sum_{\mathrm{n}=1}^{\infty}(-1)^{\mathrm{n}+1} \frac{1}{(2 \mathrm{n})^{\mathrm{x}}}$
$=\sum_{n=1}^{\infty}(-1)^{\mathrm{n}+1}(2 \mathrm{n})^{-\mathrm{x}}$

IC: $0<x<\infty$

GG56-49

\square in summary

the zeta function \& its six - pack

- $\zeta(x)=1+\frac{1}{2^{x}}+\frac{1}{3^{x}}+\frac{1}{4^{x}}+\cdots$
- $\lambda(\mathrm{x})=1+\frac{1}{3^{\mathrm{x}}}+\frac{1}{5^{\mathrm{x}}}+\frac{1}{7^{\mathrm{x}}}+\cdots$
- $\kappa(x)=\frac{1}{2^{\mathrm{x}}}+\frac{1}{4^{\mathrm{x}}}+\frac{1}{6^{\mathrm{x}}}+\frac{1}{8^{\mathrm{x}}}+\cdots$
- $\eta(x)=1-\frac{1}{2^{x}}+\frac{1}{3^{x}}-\frac{1}{4^{x}}+\cdots$
- $\beta(\mathrm{x})=1-\frac{1}{3^{\mathrm{x}}}+\frac{1}{5^{\mathrm{x}}}-\frac{1}{7^{\mathrm{x}}}+\cdots$
- $\alpha(\mathrm{x})=\frac{1}{2^{\mathrm{x}}}-\frac{1}{4^{\mathrm{x}}}+\frac{1}{6^{\mathrm{x}}}-\frac{1}{8^{\mathrm{x}}}+\cdots$

GG56-50
note that:

$$
\begin{aligned}
& \zeta(x)=\lambda(x)+\kappa(x)=\eta(x)+2 \kappa(x) \\
& \eta(x)=\lambda(x)-\kappa(x)=\zeta(x)-2 \kappa(x) \\
& \zeta(x)=2^{x} \kappa(x) \\
& \eta(x)=2^{x} \alpha(x)
\end{aligned}
$$

