
A Short Series of Serious Series Six-Packs

#56 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms
of the Organization & Exposition
of Mathematics
by Walter Gottschalk

Infinite Vistas Press
PVD RI
2001

GG56-1 (51)



„ 2001 Walter Gottschalk
500 Angell St #414
Providence RI 02906
permission is granted without charge
to reproduce & distribute this item at cost
for educational purposes; attribution requested;
no warranty of infallibility is posited

GG56-2



 we consider various power series
in the real variable x
with real coefficients;
let S be such a series;
we describe how to methodically alter S
in order to produce many power series
in the real variable x
with real coefficients
that are related to S;
this leads to the notions of
the three-pack of S,
the six-pack of S,
the triple six-pack of S,
etc
in a partial classification scheme
for power series;
this scheme also evidently applies to
other kinds of series
& to functons defined by series

• let
S = df a power series in the real variable x
          with real coefficients
S = cl the admissible series
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• the following notation & terminology is adopted:

ES = the series of the terms of S
         containing the even powers of x
= the even-power admissible series

OS =  the series of the terms of S
          containing the odd powers of x
= the odd-power admissible series

AS =  the series resulting from the change of sign
          of every other term of S
= the alternating admissible series

DS = the tbt derivative of S wrt x
= the differentiated admissible series

IS = the tbt integral of S from 0 to x
= the integrated admissible series
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• the three-pack of S
= df the following 3 series:

S = the admissible series
ES = the  even-power admissible series
OS = the  odd-power admissible series

• the six-pack of S
= df the following 6 series:

S = the admissible series
ES = the  even-power admissible series
OS = the  odd-power admissible series

AS = the alternating admissible series
AES = the alternating even-power admissible series
AOS = the alternating odd-power admissible series

GG56-5



• the triple six-pack of S
= df the following 18 series:

S = the admissible series
ES = the  even-power admissible series
OS = the  odd-power admissible series

AS = the alternating admissible series
AES = the alternating even-power admissible series
AOS = the alternating odd-power admissible series

DS = the differentiated admissible series
DES = the differentiated even-power admissible series
DOS = the differentiated odd-power admissible series

DAS = the differentiated alternating
            admissible series
DAES = the differentiated alternating even-power
              admissible series
DAOS = the differentiated alternating odd-power
               admissible series

IS = the integrated admissible series
IES  = the integrated even-power admissible series
IOS  = the integrated odd-power admissible series

IAS = the integrated alternating
           admissible series
IAES = the integrated alternating even-power
             admissible series
IAOS = the integrated alternating odd-power
             admissible series                                GG56-6



    

 the geometric power series

& its triple six - pack

• S

=  the monic geometric power series with ratio x 
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note: this series may be regarded as
the simplest nontrivial power series
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• ES

=  the monic geometric power series with ratio x  

=  

=  x

=  
1

1

 

2

2n

n=0

1

1 1

2 4 6

2

+ + + + ◊ ◊ ◊

-

- < <

•

Â
x x x

x

IC x:

GG56-8



• OS

=  the x - leading geometric power series with ratio x  
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• AS

=  the alternating monic geometric power series in x

=  the monic geometric power series with ratio x 
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• AES

=  the monic  geometric power series with ratio x  
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• AOS

=  the x - leading geometric power series with ratio x  
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• DS 

=  1+ 2x
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• DES 

=  2x
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• DOS 

=  1
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• DAS 

=  1
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note: the bar over the D
is suggestive of
a minus sign;
multiply the series DAS tbt with -1
to remove the initial minus sign
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• DAES 

=  2x
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• DAOS 
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•

:

 

=  the harmonic power series in x
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•

:

 

=  the odd harmonic power series in x
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•

:

 

=  the even harmonic power series in x
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•

( )

( )
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=  the alternating harmonic power series in x

=  Mercator' s series
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=  the alternating odd harmonic power series in x

=  Gregory' s series
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•
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=  the alternating even harmonic power series in x
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 the harmonic power series
& its six-pack

•

:

 

=  the harmonic power series in x
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•
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=  the odd harmonic power series in x

=  x

=  
x

2n +1

=  log

=  tanh

 

2n+1

n=0

-1

OS

x x x

x

x

x

IC x

+ + + ◊ ◊ ◊

+
-

- < <

•

Â

3 5 7

3 5 7

1

1

1 1

GG56-26



•
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=  the even harmonic power series in x

=  
x

2

=  
x

2n

=  log

 

2

2n

n=1

ES

x x x

x

IC x

+ + + + ◊ ◊ ◊

-

- < <

•

Â

4 6 8

2

4 6 8

1

1

1 1

GG56-27



•

( )

( )

:

 

=  the alternating harmonic power series in x

=  Mercator' s series
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=  the alternating odd harmonic power series in x

=  Gregory' s series
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=  the alternating even harmonic power series in x
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 the factorial power series

& its six - pack

• S

=  the  factorial power series in x

=  the exponential series in x
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• ES

=  the  even factorial power series in x

=  the hyperbolic cosine series in x
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• OS

=  the  odd factorial power series in x

=  the hyperbolic sine series in x
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• AS

=  the  alternating factorial power series in x

=  the alternating exponential series in x
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• AES

=  the  alternating even factorial power series in x

=  the cosine series in x
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• AOS

=  the  alternating odd factorial power series in x

=  the sine series in x
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 every real function f(x) 

with a power series expansion in x

say

f(x) =  a  =  a

 a plural IC

can be decomposed into

the sum of

an even function 

g(x) = a  =  a
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whence

f x h x

x

x

the three pack of f x

consists of

( ) ( )

)

)

&

( )

 =  g(x)

&

g(x) =  
1

2
f(x) + f(  

is called the even part of f(x)

&

h(x) =  
1

2
f(x) f(  

is called the odd part of f(x)

   

 

f(x),  g(x),  h(x)

note:  the above equations evidently hold

even for a function without a series development
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if we take

x

AES

h ix

  

S =  f(x)

then

ES =  g(x)

OS =  h(x)

AS =  f(

 =  g(i x)

AOS =  
1

i

- )

( )

we illustrate the decomposition

of a function

   even - odd 

   and its series implications

by two examples,  

one in the real field &  one in the complex field
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the real exponential  function

e  =  1

the hyperbolic cosine 

cosh x =  1

  

  sine

sinh x =  x

 odd part

& 

the even - odd decomposition

e  =  cosh x +  sinh x 

(Lambert' s formula)                                    

x

x
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&
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the complex - valued exponential  function

e  =  1

the trig cosine 

cos x =  1

  

  sine times i

i sin x =  i ( x

 odd part
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the even - odd decomposition

e  =  cos x +  i sin x                                     

(Euler'
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 the above even - odd decompositions also hold 

for the corresponding complex functions

viz

e  =  cosh z +sinh z  (Lambert' s formula)

e  =  cos z + isin z  (Euler' s formula)

wh z complex var

the functions being defined by 

the replacement of x by z 

in the real series developments

z

iz

Œ
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 the considerations
leading to the the notion of
the six-pack
of a real power series in x
or
of a function so defined
may be extended to
a series which has any functions
as terms of the series
or
of a function so defined;
here the attention is directed to
the number of the term in the series
rather than the exponent of x;
an example starting with the zeta function
is given below
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 the zeta function
& its six-pack

• the zeta function of Riemann
= the z-function of Riemann
= the Riemann zeta function
= the Riemann z-function
= Riemann's zeta function
= Riemann's z-function
= the zeta function
= the z-function
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• the lambda function

=  the 
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• the kappa function

=  the 

=  (x)

=  kappa (of) x

=  
1

2
+

1

4

=  2 + 4

=  
1

(2n)

=  n)

 1 < x <

dn

rd

df x x

x x x

x
n=1

x

n=1

k
k

-

+ + + ◊ ◊ ◊

+ + + ◊ ◊ ◊

•

- - - -

•

-
•

Â

Â

function

IC

x x

x

1

6

1

8

6 8

2(

:

GG56-46



• the eta function

=  the - function
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  •  the beta function
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• the alpha function

=  the 
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 in summary

the zeta function &  its six - pack
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note that

x

x

x

x

 

(x) =  (x) + (x) =  (x)

(x) =   (x) (x) =  (x)

(x) =  (x)

(x) =  2x

:

( )

( )

( )

z l k h k

h l k z k

z k

h a

+

- -

2

2

2

GG56-51


