Adjoining Infinities to Number Systems \#55 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press
PVD RI
2001

GG55-1 (16)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG55-2
\square the real projective line
－the one－element extension of the real number system \＆
＝the one－point compactification of the real number line \mathbb{R}
＝the real projective line
$=\Omega \cup\{\infty\}$
$={ }_{\mathrm{dn}}$ 息
$=_{\text {rd }}$（open cap）ar（overscript）dot
wh
∞
$=_{\text {rd }}$ infinity
${ }^{{ }_{c \mathrm{cl}}}$ the real projective point at infinity
note that the dot above 皿in 息 suggests the adjoined point at infinity
－there is nothing mysterious about ∞ ；
it is only necessary to choose ∞ as a set that is not an element of R ； the choice $\infty==_{d f}$ 胥 is satisfactory since no set is an element of itself by the axiom of foundation
－to make 息 into a topological space， define neighborhoods of points of 宽 as follows： for a point of 尽
a neighborhood is any subset of 息 that contains an open interval of Ω_{Ω} that contains the point；
for ∞
a neighborhood is any subset of $\dot{\Omega}$ that contains ∞ and both a left ray \＆a right ray of R ； this makes the real projective line 崽 into a circle topologically；
a geometric construction to show this is given below

GG55－4

- GP

polar projection
relating line \& circle

GG55-5
－since 息 is a simple closed curve， the linear order in 㺼 cannot be meaningfully extended to \dot{R} ；
－some algebraic operations in R are extended to 息 as follows $w h r$ is any real number：
$-\infty=\infty$
$\infty+\infty=\infty$
$\infty \times \infty=\infty$
$r+\infty=\infty+r=\infty$
$\mathrm{r} \times \infty=\infty \times \mathrm{r}=\infty$ if $\mathrm{r} \neq 0$
$r / \infty=0$
$\infty / r=\infty$
$\mathrm{r} / 0=\infty$ if $\mathrm{r} \neq 0$
\square the extended real line
－the two－element extension of the real number system R
$=$ the two－point compactification of the real number line 思
＝the bilaterally extended real number system／line
$=$ the extended real line
$=\{-\infty\} \cup$ R $\cup\{+\infty\}$
$={ }_{\mathrm{dn}}$ 盒
$=_{\text {rd }}$（open cap）ar（overscript）bar
wh
$-\infty$
$=_{\text {rd }}$ minus infinity
$=_{c 1}$ the negative real point at infinity
\＆
$+\infty$
$={ }_{r d}$ plus infinity
$=_{\mathrm{cl}}$ the positive real point at infinity
note that the bar above 超 in 原
suggests the topological closure of Ω
GG55－7

- conveniently
$+\infty={ }_{\mathrm{df}}($ R, 1$)$
$-\infty={ }_{\mathrm{df}}$ (飔, -1)
as distinct sets that are not elements of \mathbb{R}
- evidently
the real number line R^{Ω}
can be extended by one infinity at a time to

爵 $\cup\{+\infty\}$
or
to
$\{-\infty\} \cup \Omega$
－to make 高 into a topological space， define neighborhoods of points of $\overline{\text { 息 as follows：}}$ for a point of R
a neighborhood is any subset of 原 that contains an open interval of \mathbb{R}^{Ω} that contains the point；
for $+\infty$
a neighborhood is any subset of $\overline{\text { 盉 }}$ that contains $+\infty$
and a right ray of R ；
for $-\infty$
a neighborhood is any subset of $\overline{\text { B }}$ that contains $-\infty$ and a left ray of ${ }^{R}$ ； this makes the extended real line 厨 into a closed line segment topologically； a geometric construction to illustrate this is given below

GG55－9

- GP

central projection relating line \& semicircle \& diameter

- to extend the linear order in \mathbb{R}^{Ω} to a linear order in 否:
define
$-\infty<+\infty$
$-\infty<\mathrm{r}<+\infty$
wh r is any real number
- some algebraic operations in \mathbb{R}^{Ω} are extended to 不 as follows wh r is any real number:
$-(+\infty)=-\infty$
$-(-\infty)=+\infty$
$(+\infty)+(+\infty)=+\infty$
$(-\infty)+(-\infty)=-\infty$
$(+\infty)-(-\infty)=+\infty$
$(-\infty)-(+\infty)=-\infty$
$(+\infty) \times(+\infty)=+\infty$
$(-\infty) \times(-\infty)=+\infty$
$(+\infty) \times(-\infty)=(-\infty) \times(+\infty)=-\infty$

GG55-11

$$
\begin{aligned}
& \mathrm{r}+(+\infty)=(+\infty)+\mathrm{r}=+\infty \\
& \mathrm{r}+(-\infty)=(-\infty)+\mathrm{r}=-\infty \\
& \mathrm{r}-(+\infty)=-\infty \\
& \mathrm{r}-(-\infty)=+\infty \\
&(+\infty)-\mathrm{r}=+\infty \\
&(-\infty)-\mathrm{r}=-\infty \\
& \mathrm{r} \times(+\infty)=(+\infty) \times \mathrm{r}=+\infty \text { if } \mathrm{r}>0 \\
& \mathrm{r} \times(+\infty)=(+\infty) \times \mathrm{r}=-\infty \text { if } \mathrm{r}<0 \\
& \mathrm{r} \times(-\infty)=(-\infty) \times \mathrm{r}=-\infty \text { if } \mathrm{r}>0 \\
& \mathrm{r} \times(-\infty)=(-\infty) \times \mathrm{r}=+\infty \text { if } \mathrm{r}<0 \\
& \mathrm{r} /(+\infty)=\mathrm{r} /(-\infty)=0 \\
&(+\infty) / \mathrm{r}=+\infty \text { if } \mathrm{r}>0 \\
&(+\infty) / \mathrm{r}=-\infty \text { if } \mathrm{r}<0 \\
&(-\infty) / \mathrm{r}=-\infty \text { if } \mathrm{r}>0 \\
&(-\infty) / \mathrm{r}=+\infty \text { if } \mathrm{r}<0
\end{aligned}
$$

\square the complex sphere

- the one - element extension of the complex number system \mathbb{C}
$=$ the one - point compactification of the complex number plane \mathbb{C}
$=$ the extended complex number plane
$=$ the extended complex plane
$=$ the complex number sphere
$=$ the complex sphere
$=$ the Riemann sphere
$=\mathbb{C} \cup\{\infty\}$
$={ }_{\mathrm{dn}} \dot{\mathfrak{C}}$
$={ }_{\text {rd }}$ (open cap) cee (overscript) dot
wh
∞
$={ }_{\text {rd }}$ infinity
$={ }_{\mathrm{cl}}$ the complex point at infinity
note that the dot above \mathbb{C} in \mathfrak{C}
suggests the adjoined point at infinity
GG55-13
- conveniently
$\infty={ }_{\mathrm{df}} \mathbb{C}$
since \mathbb{C} is not an element of \mathfrak{C}
- to make $\dot{\mathbb{C}}$ into a topological space, define neighborhoods of points of $\dot{\mathfrak{c}}$ as follows: for a point of \mathbb{C}
a neighborhood is any subset of \dot{C} that contains an open disc of \mathbb{C} that contains the point;
for ∞
a neighborhood is any subset of \dot{C} that contains ∞ and the complement in \mathbb{C} of any bounded subset of \mathbb{C}; tbis makes the complex sphere $\stackrel{\mathfrak{C}}{\text { © }}$ into (the surface of) a sphere in 3 - space topologically; a geometric construction to illustrate this is given below

GG55-14

- GP

stereographic polar projection relating plane \& sphere
visualize by the mind's eye:
a sphere is tangent to the horizontal
xy-plane = z-plane
from above at the origin
which is then also the south pole of the sphere; draw a line segment from the north pole of the sphere to a point P of the plane; this line segment intersects the sphere in a point P^{\prime}; as the point P ranges over the plane, the point P^{\prime} ranges over the punctured sphere ie the sphere without the north pole; the north pole represents the complex point at infinity

GG55-15

- some algebraic operations in \mathbb{C} are extended to \mathfrak{C} as follows wh z is a complex number:
$-\infty=\infty$
$\infty+\infty=\infty$
$\infty \times \infty=\infty$
$\mathrm{z}+\infty=\infty+\mathrm{z}=\infty$
$\mathrm{z} \times \infty=\infty \times \mathrm{z}=\infty$ if $\mathrm{z} \neq 0$
$\mathrm{z} / \infty=0$
$\infty / \mathrm{z}=\infty$
$z / 0=\infty$ if $z \neq 0$

GG55-16

