Math Chants

\#53 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG53-1 (47)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG53-2
\square mathematical chants

- sometimes reading/saying out loud
a formula or a theorem
or a comment or a paraphrase
or a mnemonic or etc
becomes a kind of chant
which may help
the understanding
\&
the memory;
call it
symbols into speech;
call it
mathematical metrical speaking;
call it
rhythmic math;
call it
rock \& roll math;
call it
math chant;
call it
math rap;
here are some examples

GG53-3
\square multiplicative sign rule
(a)(b) $=a b$
(a)(-b) $=-a b$
$(-a)(b)=-a b$
$(-a)(-b)=a b$

- one stays \& two disappear; plus times plus gives plus plus times minus gives minus minus times plus gives minus minus times minus gives plus
- one minus gives minus two minuses give plus
- in a continued product an even number of minuses gives a plus an odd number of minuses gives a minus
\square the order of arithmetic/algebraic operations is described by the initial-letter mnemonic
- Please Excuse My Dear Aunt Sally = PEMDAS
where
P = parentheses
$\mathrm{E}=$ exponents
$\mathrm{M}=$ multiply
$D=$ divide
A = add
S = subtract
\square the two-binomial product expansion rule
$(\mathrm{a}+\mathrm{b})(\mathrm{c}+\mathrm{d})=\mathrm{ac}+\mathrm{ad}+\mathrm{bc}+\mathrm{bd}$
- for mnemonic
say: foil
where the letters are initials of the phrases
$\mathrm{f}=$ first terms
$\mathrm{o}=$ outside terms
$\mathrm{i}=$ inside terms
$1=$ last terms
multiply \& add
\square the quadratic formula
$a x^{2}+b x+c=0$
\Leftrightarrow
$x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$
wh
$a, b, c \in$ complex $n r$ \& $a \neq 0$
\& $\mathrm{x} \in$ complex nr var
- ex equals
minus bee
plus or minus
the square root of
bee square minus four ay cee
all divided by
two ay

GG53-7
\square the product \& quotient rules for the logarithm
$\log \mathrm{AB}=\log \mathrm{A}+\log \mathrm{B}$
$\log \frac{\mathrm{A}}{\mathrm{B}}=\log \mathrm{A}-\log \mathrm{B}$
\square the power \& root rules for the logarithm

$$
\log \mathrm{A}^{\mathrm{n}}=\mathrm{n} \log \mathrm{~A}
$$

$\log \sqrt[n]{A}=\frac{\log A}{n}$

- the logarithm converts
multiplication \& division into
addition \& subtraction:
the \log of the product of two positive numbers equals
the sum of the logs of the numbers
\&
the log of the quotient of two positive numbers equals
the difference of the logs of the numbers
- log of product
equals
sum of logs
\&
log of quotient
equals
difference of logs
- the logarithm converts
power raising \& root extraction
into
multiplication \& division:
the \log of a power
equals
the exponent times the \log of the base of the power \&
the \log of a root
equals
the \log of the radicand divided by the index of the root
- \log of power
equals
expo times log of base
\&
\log of root
equals
log of rad over index
\square the isosceles triangle theorem
- two sides of a triangle are equal if and only if the opposite angles are equal
\square the pythagorean theorem
- the square of the hypotenuse of a right triangle equals the sum of the squares of the two legs
- more succinctly:
square of hypo of right triangle equals
sum of squares of legs
\square the concurrency theorem
- for any triangle these four triplets of lines are each concurrent: the altitudes, the medians, the internal angle bisectors, the side perpendicular-bisectors
\square area K of triangles \& quads ito base b \& height h
- area of triangle
$K=\frac{1}{2} b h$
area of triangle
equals
one - half base times height
- area of rectangle \& parallelogram
$\mathrm{K}=\mathrm{bh}$
area of rectangle \& parallelogram
equals
base times height
- area of trapezoid
$K=\frac{1}{2}\left(b_{1}+b_{2}\right) h$
area of trapezoid
equals
arithmetic mean of bases times height
\square area K of a triangle ito sides \& angles
- ito one side \& three angles

$$
K=\frac{a^{2} \sin B \sin C}{2 \sin A}=\frac{b^{2} \sin C \sin A}{2 \sin B}=\frac{c^{2} \sin A \sin B}{2 \sin C}
$$

- ito two sides \& the included angle
$\mathrm{K}=\frac{1}{2} \mathrm{bc} \sin \mathrm{A}=\frac{1}{2} \mathrm{ca} \sin \mathrm{B}=\frac{1}{2} \mathrm{ab} \sin \mathrm{C}$
- ito three sides
$K=\sqrt{s(s-a)(s-b)(s-c)}$
- the above formulas may best be read as written; the middle formulas have the paraphrase: the area of a triangle equals one-half the product of any two sides times the sine of the included angle
\square the circle formulas
$\mathrm{C}=\pi \mathrm{d}$
- circumference of circle equals
pi times diameter
$C=2 \pi r$
- circumference of circle
equals
two pi times radius
$A=\frac{1}{4} \pi d^{2}$
- area of circle
equals
one-fourth pi times diameter squared
$\mathrm{A}=\pi \mathrm{r}^{2}$
- area of circle
equals
pi times radius squared

GG53-14
\square trig fcns of an acute angle of a right triangle ito the sides
$\sin =\frac{\text { opp }}{\text { hyp }}$
$\cos =\frac{\text { adj }}{\text { hyp }}$
$\tan =\frac{\text { opp }}{\text { adj }}$
the initial letters spell the name of
The Great Chief SOHCAHTOA

GG53-15
\square the addition formula for the sine $\sin (A+B)=\sin A \cos B+\cos A \sin B$

- the sine of the sum of two angles equals
the sine of the first times the cosine of the second plus the cosine of the first times the sine of the second
- sine of sum equals
sine of first times cosine of second plus
cosine of first times sine of second
\square the subtraction formula for the sine $\sin (A-B)=\sin A \cos B-\cos A \sin B$
- the sine of the difference of two angles equals
the sine of the first times the cosine of the second minus
the cosine of the first times the sine of the second
- sine of difference
equals
sine of first times cosine of second minus
cosine of first times sine of second
\square the addition formula for the cosine $\cos (\mathrm{A}+\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}-\sin \mathrm{A} \sin \mathrm{B}$
- the cosine of the sum of two angles equals
the product of the cosines
minus
the product of the sines
- cosine of sum
equals
product of cosines
minus
product of sines

GG53-18
\square the subtraction formula for the cosine $\cos (\mathrm{A}-\mathrm{B})=\cos \mathrm{A} \cos \mathrm{B}+\sin \mathrm{A} \sin \mathrm{B}$

- the cosine of the difference of two angles equals
the product of the cosines
plus
the product of the sines
- cosine of difference
equals
product of cosines
plus
product of sines

GG53-19
\square the addition formula for the tangent $\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$

- the tangent of the sum of two angles equals
the sum of the tangents
over one minus the product of the tangents
- tangent of sum equals
sum of tangents
over one minus product of tangents

GG53-20
\square the subtraction formula for the tangent $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$

- the tangent of the difference of two angles equals
the difference of the tangents
over
one plus the product of the tangents
- tangent of difference
equals
difference of tangents
over
one plus product of tangents

GG53-21
\square the law of sines
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 R$

- for any triangle
the ratio of any side to the sine of the opposite angle equals
the circumdiameter
- for any triangle
the ratio of the sides
equals
the ratio of the sines of the opposite angles (rather than the ratio of the angles themselves)

GG53-22
\square the law of cosines
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$b^{2}=c^{2}+a^{2}-2 c a \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

- for any triangle
the square of any side equals
the sum of the squares of the other two sides
minus
twice their product
times
the cosine of the included angle
- the law of cosines
generalizes
the pythagorean theorem

GG53-23
\square slope formula slope m of a straight line in the plane
$\mathrm{m}=\frac{\Delta \mathrm{y}}{\Delta \mathrm{x}}=\frac{\mathrm{y}_{2}-\mathrm{y}_{1}}{\mathrm{x}_{2}-\mathrm{x}_{1}}$

- slope $=\frac{\text { rise }}{\text { run }}$
- slope equals rise over run
\square distance formula
distance d between two points in the plane
$\mathrm{d}=\sqrt{(\Delta \mathrm{x})^{2}+(\Delta \mathrm{y})^{2}}=\sqrt{\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)^{2}+\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)^{2}}$
- distance $=\sqrt{(\text { run })^{2}+(\text { rise })^{2}}$
- distance
equals
square root of run squared plus rise squared
GG53-24
\square note on notation
the letter d for distance
is evidently suggested by the initial letter
of the word 'distance';
¿ but why is m the standard letter to denote slope ?
it has been suggested that the letter m for slope comes from the initial letter of the French verb monter $=$ to climb;
the thought is ingenious
and indeed
both independent discoverers,
Descartes \& Fermat, of analytic geometry were French;
however, I conjecture that the suggestion
is more poetry than history;
perhaps the idea can be regarded as a mnemonic

GG53-25
\square eccentricity e of conic sections

- circle: e = 0
- ellipse: $0<\mathrm{e}<1$
- parabola: e=1
- hyperbola: e > 1
- equilateral / rectangular hyperbola: $\mathrm{e}=\sqrt{2}$
- e measures shape:
all circles are similar
all parabolas are similar
all equilateral / rectangular hyperbolas are similar
\square the sum formula for the derivative
$(\mathrm{u}+\mathrm{v})^{\prime}=\mathrm{u}^{\prime}+\mathrm{v}^{\prime}$
- the derivative of the sum of two functions equals
the sum of the derivatives
- derivative of sum
equals
sum of derivatives

GG53-27
\square the difference formula for the derivative
$(u-v)^{\prime}=u^{\prime}-v^{\prime}$

- the derivative of the difference of two functions equals
the difference of the derivatives
- derivative of difference
equals
difference of derivatives

GG53-28
\square the product formula for the derivative
$(u v)^{\prime}=u v^{\prime}+v u^{\prime}$

- the derivative of the product of two functions equals
the first times the derivative of the second plus the second times the derivative of the first
- derivative of product equals
first times derivative of second
plus
second times derivative of first

GG53-29
\square the quotient formula for the derivative $\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{\mathrm{vu} \mathrm{u}^{\prime}-\mathrm{u} \mathrm{v}^{\prime}}{\mathrm{v}^{2}}$

- the derivative of the quotient of two functions equals
the denominator times the derivative of the numerator minus
the numerator times the derivative of the denominator all divided by the square of the denominator
- derivative of quotient equals denominator times derivative of numerator minus
numerator times derivative of denominator
all over
square of denominator

GG53-30
\square also note

$$
\left(\frac{\mathrm{u}}{\mathrm{v}}\right)^{\prime}=\frac{1}{\mathrm{v}^{2}}\left|\begin{array}{ll}
\mathrm{u}^{\prime} & \mathrm{v}^{\prime} \\
\mathrm{u} & \mathrm{v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{\mathrm{u}^{\prime}}{\mathrm{v}} & \frac{\mathrm{v}^{\prime}}{\mathrm{v}} \\
\frac{\mathrm{u}}{\mathrm{v}} & \frac{\mathrm{v}}{\mathrm{v}}
\end{array}\right|
$$

easy to look at \& remember
but
hard to say

GG53-31
\square the power rule for the derivative $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{u}^{\mathrm{n}}=\mathrm{nu} \mathrm{u}^{\mathrm{n}-1} \frac{\mathrm{du}}{\mathrm{dx}}$

- the derivative of a power of a function equals
the exponent times
the base to a power one less times the derivative of the base
- derivative of power equals exponent times
base to power one less times derivative of base

GG53-32
\square the exponential rule for the derivative $\frac{d}{d x} e^{u}=e^{u} \frac{d u}{d x}$
$\frac{d}{d x} e^{x}=e^{x}$

- the derivative of the exponential of a function equals
the exponential of the function times the derivative of the function
- derivative of expo fcn is itself

GG53-33
\square the logarithm rule for the derivative $\frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{u}=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}$
$\frac{\mathrm{d}}{\mathrm{dx}} \log \mathrm{x}=\frac{1}{\mathrm{x}}$

- the derivative of the logarithm of a function equals
the reciprocal of the function times the derivative of the function
- derivative of $\log \mathrm{fcn}$ is recip fcn

GG53-34
\square the logarithm absolute rule for the derivative $\frac{\mathrm{d}}{\mathrm{dx}} \log |\mathrm{u}|=\frac{1}{\mathrm{u}} \frac{\mathrm{du}}{\mathrm{dx}}$
$\frac{\mathrm{d}}{\mathrm{dx}} \log |\mathrm{x}|=\frac{1}{\mathrm{x}}$

- the derivative of the logarithm absolute of a function equals
the reciprocal of the function times the derivative of the function
- derivative of log abso fcn is recip fcn

GG53-35
\square the continued product rule for the derivative

- to differentiate a continued product differentiate each factor separately and add
\square to take the nth derivative of a product uv, use the binomial theorem to expand the RHS \& replace each rth power by the rth derivative:
$D^{n}(u v)=(D u+D v)^{n}$
such notational prestidigitation
of suddenly changing the notation
is called
the umbral calculus

GG53-36
\square derivatives of the 6 trig fcns
D $=\frac{\mathrm{d}}{\mathrm{dx}}$

- $\mathrm{D} \sin \mathrm{x}=\cos \mathrm{x}$
- $D \cos x=-\sin x$
- $D \tan x=\sec ^{2} x$
- $\mathrm{D} \cot \mathrm{x}=-\csc ^{2} \mathrm{x}$
- $D \sec x=\sec x \tan x$
- $D \csc x=-\csc x \cot x$
note: interchange of cofens on LHS produces interchange of cofens on RHS together with change of sign
- derivative of sine is cosine
- derivative of cosine is minus sine
- derivative of tangent is secant squared
- derivative of cotangent is minus cosecant squared
- derivative of secant
is secant times tangent
- derivative of cosecant is minus cosecant times cotangent
\square the linear rule for the integral
$\int(\alpha u+\beta v) d x=\alpha \int u d x+\beta \int v d x$
$\int_{a}^{b}(\alpha u+\beta v) d x=\alpha \int_{a}^{b} u d x+\beta \int_{a}^{b} v d x$
- for indefinite \& definite integrals the integral is a linear function of the integrand
\square the tracking rule for the definite integral
$\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
- for the definite integral integral from a to b plus integral from b to c equals integral from a to c
\square the backtracking rule for the definite integral $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
- for the definite integral interchanging lims changes sign
\square the formula for integration by parts $\int u d v=u v-\int v d u$
- integral of yu dee vee equals
yu times vee
minus
integral of vee dee yu

GG53-41
\square Green's Formula / Theorem
$\oint_{C} P(x, y) d x+Q(x, y) d y=\iint_{R}\left|\begin{array}{ll}\frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\ P & Q\end{array}\right| d x d y$
looking is better than reading
\square Stokes' Formula / Law / Theorem
$\int_{\partial \Omega} \omega=\int_{\Omega} d \omega$
looking is better than reading;
it's a very pretty \& a very powerful formula
\square De Morgan laws for conjunction \& disjunction
$\neg(\mathrm{p} \& \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \vee \neg \mathrm{q}$
$\neg(p \& q \& r) \Leftrightarrow \neg p \vee \neg q \vee \neg r$ etc
$\neg(\mathrm{p} \vee \mathrm{q}) \Leftrightarrow \neg \mathrm{p} \& \neg \mathrm{q}$
$\neg(\mathrm{p} \vee \mathrm{q} \vee \mathrm{r}) \Leftrightarrow \neg \mathrm{p} \& \neg \mathrm{q} \& \neg \mathrm{r}$ etc

- the negation of a conjunction of propositions
is equivalent to
the disjunction of the negations of the propositions
\& dually
the negation of a disjunction of propositions
is equivalent to
the conjunction of the negations of the propositions
- negation of conjunction is equivalent to disjunction of negations
\& dually
negation of disjunction
is equivalent to
conjunction of negations
- not and iff or nots
\& dually
not or iff and nots

GG53-44
\square De Morgan laws for quantifiers
$\neg \forall \mathrm{x} . \mathrm{fx} \Leftrightarrow \exists \mathrm{x} . \neg \mathrm{fx}$
$\neg \exists \mathrm{x} . \mathrm{fx} \Leftrightarrow \forall \mathrm{x} . \neg \mathrm{fx}$

- it is not the case that for all x, fx
if and only if
there exists x such that it is not the case that fx \& dually
it is not the case that there exists x such fx if and only if for all x , it is not the case that fx
- not all is equivalent to some not \& dually not some is equivalent to all not
- not all ef is some not ef \& dually not some ef is all not ef

GG53-45
\square De Morgan laws for intersection \& union of sets $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
$(A \cap B \cap C)^{\prime}=A^{\prime} \cup B^{\prime} \cup C^{\prime}$ etc
$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
$(A \cup B \cup C)^{\prime}=A^{\prime} \cap B^{\prime} \cap C^{\prime}$
etc
$\left(\bigcap_{i \in I} A_{i}\right)^{\prime}=\bigcup_{i \in I} A_{i}{ }^{\prime}$
$\left(\bigcup_{i \in I} A_{i}\right)^{\prime}=\bigcap_{i \in I} A_{i}{ }^{\prime}$

- complement of intersection equals
union of complements
\& dually
complement of union
equals
intersection of complements

GG53-46
\square here is a famous example of presumably unconscious versification with perfect meter \& rhyme in the midst of a serious mathematical treatise:

- And so no force however great
can stretch a cord however fine
into an horizontal line
which is accurately straight.
(the last line is alternatively quoted as
'that shall be absolutely straight.')
from
'Elementary Treatise on Mechanics' (1819)
by
William Whewell
1794-1866
English
mathematician, scientist,
philosopher, literary scholar

GG53-47

