Three Momentous Means: AM, GM, AGM \#52 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG52-1 (25)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG52-2
D. the arithmetic mean
$=\mathrm{AM}$
let

- $a, b \in$ real $n r$
then
- the arithmetic mean of a and b

$$
\begin{aligned}
& ={ }_{\mathrm{dn}} \quad \operatorname{AM}(\mathrm{a}, \mathrm{~b}) \\
& =_{\mathrm{df}} \frac{\mathrm{a}+\mathrm{b}}{2}
\end{aligned}
$$

note $\mathrm{AM} \leftarrow$ the capitalized initial letters of arithmetic mean

GG52-3
D. the geometric mean
= GM
let

- $a, b \in$ real nr
- $\mathrm{a}, \mathrm{b} \geq 0$
then
- the geometric mean of a and b
$={ }_{\mathrm{dn}} \operatorname{GM}(\mathrm{a}, \mathrm{b})$
$={ }_{\mathrm{df}} \quad \sqrt{\mathrm{ab}} \geq 0$
note $\mathrm{GM} \leftarrow$ the capitalized initial letters of geometric mean

GG52-4

T. the arithmetic mean \& geometric mean inequality
 $=$ the $\mathrm{AM} \& \mathrm{GM}$ inequality

let

- $a, b \in$ real $n r$
- $a, b \geq 0$
then
- $\max (\mathrm{a}, \mathrm{b}) \geq \mathrm{AM}(\mathrm{a}, \mathrm{b}) \geq \mathrm{GM}(\mathrm{a}, \mathrm{b}) \geq \min (\mathrm{a}, \mathrm{b})$
- $\operatorname{AM}(a, b)>\operatorname{GM}(a, b) \Leftrightarrow a \neq b$
- $A M(a, b)=G M(a, b) \Leftrightarrow a=b$
- $\mathrm{a} \leq \mathrm{b} \Leftrightarrow \mathrm{a} \leq \mathrm{GM}(\mathrm{a}, \mathrm{b}) \leq \mathrm{AM}(\mathrm{a}, \mathrm{b}) \leq \mathrm{b}$
- $\mathrm{a}<\mathrm{b} \Leftrightarrow \mathrm{a} \leq \mathrm{GM}(\mathrm{a}, \mathrm{b})<\mathrm{AM}(\mathrm{a}, \mathrm{b})<\mathrm{b}$
- $0<\mathrm{a}<\mathrm{b} \Leftrightarrow \mathrm{a}<\operatorname{GM}(\mathrm{a}, \mathrm{b})<\operatorname{AM}(\mathrm{a}, \mathrm{b})<\mathrm{b}$
- $0=\mathrm{a}<\mathrm{b} \Leftrightarrow \mathrm{a}=\mathrm{GM}(\mathrm{a}, \mathrm{b})<\mathrm{AM}(\mathrm{a}, \mathrm{b})<\mathrm{b}$
- $\mathrm{a}=\mathrm{b} \Leftrightarrow \mathrm{a}=\mathrm{GM}(\mathrm{a}, \mathrm{b})=\mathrm{AM}(\mathrm{a}, \mathrm{b})=\mathrm{b}$
- $\operatorname{GM}(\mathrm{a}, \mathrm{b})=\mathrm{a} \Leftrightarrow \mathrm{a}=0 \vee \mathrm{a}=\mathrm{b}$
- $\operatorname{GM}(a, b)=b \Leftrightarrow b=0 \vee a=b$
- $\operatorname{AM}(a, b)=a \Leftrightarrow a=b$
- $\operatorname{AM}(a, b)=b \Leftrightarrow a=b$

GG52-5

P. in two parts

$$
\begin{aligned}
& (1)(a-b)^{2} \geq 0 \\
& a^{2}-2 a b+b^{2} \geq 0 \\
& a^{2}+2 a b+b^{2} \geq 4 a b \\
& (a+b)^{2} \geq 4 a b \\
& a+b \geq 2 \sqrt{a b} \\
& \frac{a+b}{2} \geq \sqrt{a b} \\
& \operatorname{AM}(a, b) \geq G M(a, b)
\end{aligned}
$$

GG52-6

> (2) tfsape
> $a=b$
> $a-b=0$
> $(a-b)^{2}=0$
> $a^{2}-2 a b+b^{2}=0$
> $a^{2}+2 a b+b^{2}=4 a b$
> $(a+b)^{2}=4 a b$
> $a+b=2 \sqrt{a b}$
> $\frac{a+b}{2}=\sqrt{a b}$
> $A M(a, b)=G M(a, b)$
the proof is readily completed

GG52-7
R. let

- $a, b \in$ real $n r$
- $a, b \geq 0$

then

- $\left.0 \leq \operatorname{AM}(\mathrm{a}, \mathrm{b})-\mathrm{GM}(\mathrm{a}, \mathrm{b}) \leq \frac{1}{2} \right\rvert\, \mathrm{a}-\mathrm{b}$
- $0<\operatorname{AM}(\mathrm{a}, \mathrm{b})-\operatorname{GM}(\mathrm{a}, \mathrm{b})<\frac{1}{2}|\mathrm{a}-\mathrm{b}|$
\Leftrightarrow
$a \neq b \& a \neq 0 \& b \neq 0$

GG52-8
D. \& R. the arithmetic - geometric mean
= AGM
let

- $a, b \in$ real nr
- $\mathrm{a}, \mathrm{b} \geq 0$
- the sequences
$\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \cdots\right)$
$\left(b_{0}, b_{1}, b_{2}, \cdots\right)$
are defined recursively as follows: (rec def)
$\mathrm{a}_{0}=\mathrm{a}$
$\mathrm{b}_{0}=\mathrm{b}$
$a_{n+1}=G M\left(a_{n}, b_{n}\right)$
$\mathrm{b}_{\mathrm{n}+1}=\mathrm{AM}\left(\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right)$
($\mathrm{n} \in$ nonneg int var)

GG52-9
then

- $\min (\mathrm{a}, \mathrm{b}) \leq \mathrm{a}_{1} \leq \mathrm{a}_{2} \leq \mathrm{a}_{3} \leq \cdots \leq \mathrm{b}_{3} \leq \mathrm{b}_{2} \leq \mathrm{b}_{1} \leq \max (\mathrm{a}, \mathrm{b})$
- $\mathrm{b}_{\mathrm{n}+1}-\mathrm{a}_{\mathrm{n}+1} \leq \frac{1}{2}\left(\mathrm{~b}_{\mathrm{n}}-\mathrm{a}_{\mathrm{n}}\right) \leq \frac{1}{2^{\mathrm{n}+1}}|\mathrm{a}-\mathrm{b}| \quad(\mathrm{n} \in \operatorname{pos}$ int var $)$
- $\exists \lim _{n \rightarrow \infty} a_{n} \& \exists \lim _{n \rightarrow \infty} b_{n} \& \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \quad(n \in \operatorname{posint}$ var $)$
- the arithmetic - geometric mean of a and b
$={ }_{\mathrm{dn}} \operatorname{AGM}(\mathrm{a}, \mathrm{b})$
$={ }_{d f} \lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \quad(n \in \operatorname{pos}$ int var $)$
- $\min (\mathrm{a}, \mathrm{b}) \leq \mathrm{GM}(\mathrm{a}, \mathrm{b}) \leq \mathrm{AGM}(\mathrm{a}, \mathrm{b}) \leq \mathrm{AM}(\mathrm{a}, \mathrm{b}) \leq \max (\mathrm{a}, \mathrm{b})$
note AGM \leftarrow the capitalized initial letters of arithmetic-geometric mean

GG52-10
T. (Gauss) an elliptic integral of the first kind for the arithmetic - geometric mean
let

- $\mathrm{a}, \mathrm{b} \in$ pos real nr
- $\mathrm{a}>\mathrm{b}$
- $\mathrm{k}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}$
then
- AGM (a,b)
$=\frac{a \pi}{2} \div \int_{0}^{1} \frac{1}{\sqrt{\left(1-\mathrm{t}^{2}\right)\left(1-\mathrm{k}^{2} \mathrm{t}^{2}\right)}} \mathrm{dt}$
$=\frac{\mathrm{a} \pi}{2} \div \int_{0}^{\pi / 2} \frac{1}{\sqrt{1-\mathrm{k}^{2} \sin ^{2} \theta}} \mathrm{~d} \theta$
(this integral is nonelementary)

GG52-11
D. the ubiquitous constant
$={ }_{a b}$ ubiq const
$={ }_{\mathrm{dn}} \mathrm{U}$ wh $\mathrm{U} \leftarrow \underline{\text { ubiquitous }}$
$={ }_{\mathrm{df}} \operatorname{AGM}\left(1, \frac{1}{\sqrt{2}}\right)$
$=\frac{\pi}{2 \sqrt{2}} \div \int_{0}^{1} \frac{1}{\sqrt{\left(1-\mathrm{t}^{2}\right)\left(2-\mathrm{t}^{2}\right)}} \mathrm{dt}$
$=\frac{\pi}{2 \sqrt{2}} \div \int_{0}^{\pi / 2} \frac{1}{\sqrt{2-\sin ^{2} \theta}} \mathrm{~d} \theta$
$=\frac{\Gamma^{2}(3 / 4)}{\sqrt{\pi}}$
$=0.8472130848 \cdots$
\square the three classical means are

- the arithmetic mean $=\mathrm{AM}$
- the geometric mean $=$ GM
- the harmonic mean $=\mathrm{HM}$
of a finite sequence of real numbers that are defined on the following page; these three means are then subsumed under the more general notion of mean that is given next; note that capitalized initials are used for briefer denotation

GG52-13

- the arithmetic mean of real numbers $a_{1}, a_{2}, \cdots, a_{n} \quad$ wh $n \in$ posint
$={ }_{d n} \operatorname{AM}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
$={ }_{d f} \frac{1}{n}\left(a_{1}+a_{2}+\cdots+a_{n}\right)$
- the geometric mean of nonnegative real numbers $a_{1}, a_{2}, \cdots, a_{n} \quad$ wh $n \in \operatorname{posint}$
$={ }_{d n} \operatorname{GM}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
$=\sqrt[n]{a_{1} a_{2} \cdots a_{n}} \geq 0$
- the harmonic mean of nonzero real numbers $a_{1}, a_{2}, \cdots, a_{n} \quad$ wh $n \in$ posint
$={ }_{d n} \operatorname{HM}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
$={ }_{\mathrm{df}}$ the reciprocal of the arithmetic mean of the reciprocals of $a_{1}, a_{2}, \cdots, a_{n}$
note $\operatorname{HM}(a, b)=\frac{2 a b}{a+b}$

GG52-14

D. \& R. the general classical mean

let

- $\mathrm{n} \in \operatorname{pos}$ int
- $\mathrm{a}=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \cdots, \mathrm{a}_{\mathrm{n}}\right) \in$ ordered n - tuple of nonnegative real numbers
- $r \in$ nonzero real number variable
then
- the classical mean of a with index r
$={ }_{\mathrm{dn}} \mathrm{M}_{\mathrm{r}}(\mathrm{a})=\mathrm{M}_{\mathrm{r}}$ wh $\mathrm{M} \leftarrow$ mean
$={ }_{d f}\left(\frac{1}{n} \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{k}}^{\mathrm{r}}\right)^{\frac{1}{\mathrm{r}}}$
(if $\mathrm{a}_{\mathrm{k}}=0$ for some $\mathrm{k} \in \underline{\mathrm{n}} \& \mathrm{r}<0$, then $\left.M_{r}(a)={ }_{d f} 0\right)$

GG52-15
it follows that

- $\mathrm{M}_{1}(\mathrm{a})=\mathrm{AM}(\mathrm{a})$
- $M_{0}(a)={ }_{d f} \lim _{r \rightarrow 0} M_{r}(a)=G M(a)$
- $\mathrm{M}_{-1}(\mathrm{a})=\mathrm{HM}(\mathrm{a})$
- M_{r} is a weakly increasing function of the real number variable r
- $\exists \lim _{\mathrm{r} \rightarrow-\infty} \mathrm{M}_{\mathrm{r}}=\min (\mathrm{a})$
- $\exists \lim _{\mathrm{r} \rightarrow+\infty} \mathrm{M}_{\mathrm{r}}=\max (\mathrm{a})$
- $\min (a) \leq M_{r} \leq \max (a) \quad(r \in$ real $n r)$
- $\min (\mathrm{a}) \leq \mathrm{HM}(\mathrm{a}) \leq \mathrm{GM}(\mathrm{a}) \leq \mathrm{AM}(\mathrm{a}) \leq \max (\mathrm{a})$ (called
the arithmetic-geometric-harmonic mean inequality = AGHMI)

GG52-16
\&
furthermore
if the $\mathrm{a}_{\mathrm{k}}(\mathrm{k} \in \underline{\mathrm{n}})$ are all positive \& not all equal, then

- M_{r} is a strictly increasing function of the real number variable r
- $\min (a)<M_{r}<\max (a) \quad(r \in$ real $n r)$
- $\min (\mathrm{a})<\mathrm{HM}(\mathrm{a})<\mathrm{GM}(\mathrm{a})<\mathrm{AM}(\mathrm{a})<\max$ (a)

GG52-17

R．relating AM \＆GM by the inverse functions：
the exponential function \exp
\＆
the logarithm function \log
－the exponential function
exp：泪 \rightarrow 㘣 $_{+}$
（mapping
the real line 㺼
one－to－one onto
the positive real ray 㘣 $_{+}$）
carries
the arithmetic mean $A M$ in R
to
the geometric mean GM in 㘣 $_{+}$ ie
$\exp A M(a, b)=G M(\exp a, \exp b) \quad(a, b \in \mathbb{R})$
$\exp A M(a, b, c)=G M(\exp a, \exp b, \exp c) \quad(a, b, c \in$ 圆 $)$
etc
GG52－18
－the logarithm function
$\log :$ 周 $_{+} \rightarrow$ 思
（mapping
the positive real ray 㘣 $_{+}$
one－to－one onto
the real line R ）

carries

the geometric mean GM in R_{+}
to
the arithmetic mean AM in R^{Ω}
ie
$\log \operatorname{GM}(\mathrm{a}, \mathrm{b})=\mathrm{AM}(\log \mathrm{a}, \log \mathrm{b}) \quad\left(\mathrm{a}, \mathrm{b} \in \mathbb{R}_{+}\right)$
$\log \operatorname{GM}(a, b, c)=A M(\log a, \log b, \log c) \quad\left(a, b, c \in \Omega_{+}\right)$
etc

GG52－19
R. $\mathrm{HM}, \mathrm{GM}, \mathrm{AM} \in \mathrm{GP}$
let

- $\mathrm{a}, \mathrm{b} \in$ real nr
- $a, b>0$
then
- $\operatorname{GM}(\operatorname{AM}(a, b), \operatorname{HM}(a, b))=\operatorname{GM}(a, b)$
- $\operatorname{HM}(\mathrm{a}, \mathrm{b}), \operatorname{GM}(\mathrm{a}, \mathrm{b}), \operatorname{AM}(\mathrm{a}, \mathrm{b})$ are in geometric progression
with common ratio $=\frac{a+b}{2 \sqrt{a b}}$

GG52-20
R. let

- $a, b \in$ real $n r$
- $a, b>0$

then

- $0 \leq \mathrm{AM}(\mathrm{a}, \mathrm{b})-\mathrm{HM}(\mathrm{a}, \mathrm{b}) \leq \frac{1}{2}|\mathrm{a}-\mathrm{b}|$
- $0<\operatorname{AM}(\mathrm{a}, \mathrm{b})-\operatorname{HM}(\mathrm{a}, \mathrm{b})<\frac{1}{2}|\mathrm{a}-\mathrm{b}|$
\Leftrightarrow
$a \neq b$

GG52-21
R. a complicated way to obtain GM
let

- $a, b \in$ real $n r$
- $\mathrm{a}, \mathrm{b}>0$
- the sequences
$\left(a_{0}, a_{1}, a_{2}, \cdots\right)$
$\left(b_{0}, b_{1}, b_{2}, \cdots\right)$
are defined recursively as follows:
(rec def)
$\mathrm{a}_{0}=\mathrm{a}$
$\mathrm{b}_{0}=\mathrm{b}$
$\mathrm{a}_{\mathrm{n}+1}=\operatorname{HM}\left(\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right)$
$\mathrm{b}_{\mathrm{n}+1}=\mathrm{AM}\left(\mathrm{a}_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}\right)$
($\mathrm{n} \in$ nonneg int var)

then

- $a b=a_{0} b_{0}=a_{1} b_{1}=a_{2} b_{2}=\cdots$
- $\min (\mathrm{a}, \mathrm{b}) \leq \mathrm{a}_{1} \leq \mathrm{a}_{2} \leq \mathrm{a}_{3} \leq \cdots \leq \mathrm{b}_{3} \leq \mathrm{b}_{2} \leq \mathrm{b}_{1} \leq \max (\mathrm{a}, \mathrm{b})$
- $\mathrm{b}_{\mathrm{n}+1}-\mathrm{a}_{\mathrm{n}+1} \leq \frac{1}{2}\left(\mathrm{~b}_{\mathrm{n}}-\mathrm{a}_{\mathrm{n}}\right) \leq \frac{1}{2^{\mathrm{n}+1}}|\mathrm{a}-\mathrm{b}| \quad(\mathrm{n} \in$ pos int var $)$
- $\exists \lim _{n \rightarrow \infty} a_{n} \& \exists \lim _{n \rightarrow \infty} b_{n}$
$\& \lim _{\mathrm{n} \rightarrow \infty} \mathrm{a}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{b}_{\mathrm{n}}=\operatorname{GM}(\mathrm{a}, \mathrm{b})$
($\mathrm{n} \in$ pos int var)

GG52-23
R. conjectured origin of terms

- the term
geometric mean
likely came from the geometric context
in which a right triangle
with altitude to the hypotenuse
exhibits
three geometric means
involving
legs,
hypotenuse,
segments of the hypotenuse,
altitude
- the term
harmonic mean
likely came from the musical context in which a vibrating stretched string emitting a musical note has its frequency of vibration inversely proportional to its length; note that
doubling the frequency (= dividing the length by 2)
raises the musical note an octave, tripling the frequency (= dividing the length by 3)
raises the musical note by an octave and a fifth, etc

GG52-24

Q \& A. ¿ why does
mean (noun \& adj)
mean
average ?
because
mean
\uparrow
mene (Middle English) = middle
\uparrow
moien (Old French)
$=$ moyen (Modern French) $=$ middle
\uparrow
medianus (Late Latin)
$=$ that which is in the middle
\uparrow
medius (Latin) $=$ middle
of course
mean
has other meanings too as is customary with words

GG52-25

