Initial Letters Provide Literal Notation

\#49 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG49-1 (39)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

ㅁ Names of Notions Nominate Notation

- the initial letters of names of objects often provide good efficient suggestive easy-to-remember literal notation
for the notions under consideration; that general notational principle is illustrated in several ways in the following

GG49-3
\square first letters are good symbols
it has long been generally recognized that taking the first letter (lowercase or capital) of the name of a mathematical object (individual or species), or first letter of the principal word in a name phrase, as a symbol/sign (constant or variable) for this object is often sound notational practice
eg

- a = angle
- $\mathrm{A}=$ algebra
- $\mathrm{A}_{\mathrm{n}}=$ the alternating group on n objects
- A = angle
- $\mathrm{A}=$ area

GG49-4

- $\mathrm{b}=$ base length
- B_{n} or $\mathrm{B}^{\mathrm{n}}=\mathrm{n}$-ball
- $\mathrm{B}=$ Banach space
- $\mathrm{B}=$ base area
- $\mathrm{B}(\mathrm{n})=$ the nth Bell number
- $\mathrm{B}_{\mathrm{n}}=$ the nth Bernoulli number
- $\mathrm{B}_{\mathrm{r}}=$ the bounding r-cycle group
- $\mathrm{B}^{\mathrm{r}}=$ the cobounding r -cocycle group

GG49-5

- $\mathrm{c}=$ cardinal of the continuum
- $\mathrm{c}=$ constant
- $\mathrm{C}_{\mathrm{r}}=$ the r -chain group
- $\mathrm{C}^{\mathrm{r}}=$ the r -cochain group
- $\mathrm{C}=$ circumference
- ${ }_{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=$ the number of combinations of n things taken r at a time
- $\mathrm{C}=$ complex
- $\mathrm{C}=$ constant
- $\mathrm{C}=$ curve
- $\mathrm{d}=$ diameter
- $\mathrm{d}=$ difference
- $\mathrm{d}=$ differential/derivative
- $\mathrm{D}=$ derivative
- $\mathrm{D}=$ discriminant
- $\mathrm{D}=$ domain
- $\mathrm{e}=$ eccentricity
- $\mathrm{e}=$ base of exponential function
- $\mathrm{E}=$ entropy
- $f_{n}=$ the nth Fibonacci number
- $\mathrm{f}=$ function
- $\mathrm{F}=$ truth-value falsity
- $\mathrm{F}_{\mathrm{n}}=$ the nth Fermat number
- $F=$ field
- $F=$ function

GG49-7

- $\mathrm{g}=$ genus
- $G=$ group
- $\mathrm{h}=$ height
- $\mathrm{h}=$ homeomorphism
- $\mathrm{H}=$ Hamiltonian (from Hamilton)
- H_{p} or $\mathrm{H}^{\mathrm{p}}=$ the Hardy space of index p
- $\mathrm{H}=$ Hessian (from Hesse)
- $\mathrm{H}_{\mathrm{n}}=$ the nth harmonic number
- $\mathrm{H}=$ Hilbert space
- $\mathrm{H}_{\mathrm{r}}=$ the r-homology group
- $\mathrm{H}^{\mathrm{r}}=$ the r-cohomology group
- $\mathrm{i}=$ imaginary unit
- $\mathrm{i}=$ index
- $\mathrm{I}=$ identity matrix
- $\mathrm{I}=$ indicator
- $\mathrm{I}=$ integral
- $\mathrm{I}=$ interval
- $\mathbf{J}=$ Jacobian (from Jacobi)
- $\mathrm{k}=$ constant (phonetic value)
- $\mathrm{K}=$ complex (phonetic value)
- $\mathrm{K}=$ knot

GG49-9

- 1_{p} or $1^{p}=$ the Lebesgue sequence space of index p (note the script lowercase el)
- $\mathrm{L}=$ Lagrangian (from Lagrange)
- L_{p} or $L^{p}=$ the Lebesgue function space of index p
- $\mathrm{L}=$ length
- m = mean
- m = measure
- $\mathrm{m}=$ modulus
- m = moment
- $\mathrm{M}=$ Turing machine
- $\mathrm{M}=$ manifold
- $\mathrm{M}=$ matrix
- $\mathrm{M}_{\mathrm{n}}=$ the nth Mersenne number
- $\mathrm{M}=$ module
- $\mathrm{M}=$ monoid

GG49-10

- $\mathrm{n}=$ number
- $\mathrm{N}=$ norm
- $\mathrm{N}=$ number
- $\mathrm{O}=$ origin
- $\mathrm{p}=$ prime number
- $\mathrm{p}=$ proposition
- ${ }_{\mathrm{n}} \mathrm{P}_{\mathrm{r}}=$ the number of permutations of n things taken r at a time
- $\mathrm{P}=$ point
- $\mathrm{P}=$ polynomial
- $\mathrm{q}=$ quaternion
- $\mathrm{Q}=$ quadrant
- $\mathrm{r}=$ radial distance
- $\mathrm{r}=$ radian
- $\mathrm{r}=$ radius
- $\mathrm{r}=$ ratio
- $\mathrm{R}=$ range
- $\mathrm{R}=$ region
- $\mathrm{R}=$ relation
- $\mathrm{s}=$ semiperimeter
- $\mathrm{s}=$ side
- $\mathrm{s}=$ subtending arc
- $S=$ space
- $S^{\mathrm{n}}=\mathrm{n}$-sphere
- $\mathrm{S}=$ surface
- $S=$ surface area

GG49-12

- $\mathrm{t}=$ time
- $\mathrm{T}=$ tensor
- $\mathrm{T}=$ transformation
- $\mathrm{T}=$ truth-value truth
- $\mathbf{u}=$ unit vector (note the boldface lowercase yu)
- $\mathrm{v}=$ velocity
- $\mathrm{V}=$ Vandermonde determinant
- $\mathrm{V}=$ variation
- $\mathrm{V}=$ vector space
- $\mathrm{V}=$ volume
- $\mathrm{w}=$ weight
- $\mathrm{w}=$ width
- $\mathrm{W}=\mathrm{Wronskian}$ (from Wronski)

GG49-13
\square basic notation for sets / systems of numbers; this notation uses
capital English letters in the open - face style; this notation is now more - or - less universally adopted in denoting the main line of number systems viz
$\Re \subset \mathbb{N} \subset \mathbb{Z} \subset @ \subset$ 国 $\subset \mathfrak{C} \subset \mathbb{B}$

- $\mathbb{P}=$ the set of all positive integers
= the set of positive integers
= the positive integer set
$=$ the positive integers
$=$ the semiring of positive integers
- $\mathbb{N}=$ the set of all nonnegative integers
= the set of nonnegative integers
= the nonnegative integer set
= the nonnegative integers
= the semiring of nonnegative integers
GG49-14
- $Z=$ the set of all integers
$=$ the set of integers
$=$ the integer set
$=$ the integers
$=$ the ring of integers
- @ = the set of all rational numbers
$=$ the set of rational numbers
$=$ the rational number set
$=$ the rational numbers
$=$ the set of all rationals
$=$ the set of rationals
$=$ the rationals
$=$ the field of rational numbers
- 尽 = the set of all real numbers
$=$ the set of real numbers
$=$ the real number set
$=$ the real numbers
$=$ the set of all reals
$=$ the set of reals
$=$ the reals
$=$ the field of real numbers
$=$ the field of reals
- $\mathfrak{C}=$ the set of all complex numbers
$=$ the set of complex numbers
$=$ the complex number set
$=$ the complex numbers
$=$ the field of complex numbers

GG49-16

- $\mathbb{R}=$ the set of all quaternions
$=$ the set of quaternions
$=$ the quaternion set
$=$ the quaternions
$=$ the division ring of quaternions
- (0) = the set of all octonions
$=$ the set of octonions
$=$ the octonion set
$=$ the octonions
$=$ the nonassociative noncommutative real linear algebra of octonions
- origin of notation
$\mathfrak{P} \leftarrow$ positive
$\mathbb{N} \leftarrow$ nonnegative, natural, number
$\mathbb{Z} \leftarrow$ die \underline{Z} ahl $($ German $)=$ number
@ \leftarrow quotient

爵 \leftarrow real
$\mathbb{C} \leftarrow$ complex
$\mathfrak{H} \leftarrow$ Hamilton $=$ discoverer $/$ inventor of quaternions
© \leftarrow octonion

GG49-18
\square the field of all complex algebraic numbers
= the field of complex algebraic numbers
= the complex algebraic number field
$={ }_{\mathrm{dn}}$ 臽
$=_{\text {rd }}$ (open cap) ay
wh
$\AA \leftarrow$ the initial letter of 'algebraic'
\square the field of all real algebraic numbers
= the field of real algebraic numbers
= the real algebraic number field
= A \cap 回
$={ }_{\mathrm{dn}} \mathbb{A}_{\mathrm{r}}$
wh
$\mathbb{A}_{\mathrm{r}} \leftarrow \AA$ and the initial letter of 'real'

GG49-19
\square the ring of all Gaussian integers
= the ring of Gaussian integers
$=$ the Gaussian integer ring
$={ }_{\mathrm{df}}\{\mathrm{m}+\mathrm{in} \mid \mathrm{m}, \mathrm{n} \in \mathbb{Z}\}$
$=\mathbb{Z}+\mathrm{i}$
$=_{\mathrm{dn}} \mathbb{G}$
$=_{\mathrm{rd}}$ (open cap) gee
wh
$\mathbb{G} \leftarrow$ the initial letter of 'Gauss'
\square the field with exactly p^{n} elements wh $\mathrm{p} \in$ prime \& $\mathrm{n} \in \operatorname{pos}$ int
$=$ the field with p^{n} elements
$=$ the field of order p^{n}
$=_{\mathrm{dn}}{ }^{F}\left(\mathrm{p}^{\mathrm{n}}\right)$
$=_{\text {rd }}$ (open cap) ef of p^{n}
wh
$『 \leftarrow$ the common initial letter of 'finite field'
note:
a field with only finitely many elements
$=a$ field with exactly a prime power p^{n} of elements
$=\mathrm{a}$ finite field
= a Galois field
\square euclidean space of dimension n wh $\mathrm{n} \in$ nonneg int
$=\mathrm{n}$ - dimensional euclidean space
= euclidean n -space
$=\mathrm{dn}_{\mathrm{d}}$ 邑 $^{\text {n }}$
$=_{\mathrm{rd}}$ (open cap) ee (super) n
wh
區 \leftarrow the initial letter of 'euclidean' (from Euclid)
\square projective space of dimension n wh $\mathrm{n} \in$ nonneg int
$=\mathrm{n}$-dimensional projective space
= projective n -space
$=\mathrm{dn} 叩^{\mathrm{n}}$
$=_{\text {rd }}$ (open cap) pe (super) n
wh
$巴 \leftarrow$ the initial letter of ' projective'
\square the unit circle
= the circle group
$={ }_{\mathrm{dn}}$ T
${ }^{\text {rd }}$ (open cap) tee
wh
T \leftarrow the initial letter of 'torus' the circle being the 1 -torus
\square the n - dimensional torus
wh $\mathrm{n} \in$ nonneg int
$=$ the n - torus
$=$ the n - toral group
$={ }_{\mathrm{dn}}$ 列 $^{\mathrm{n}}$
$_{\text {rd }}$ (open cap) tee (super) n
wh
T \leftarrow the initial letter of 'torus'

GG49-24
\square sometimes
initial letters of words
from other languages
make notational contributions;
here are four examples from German:

- $\mathrm{e}=$ unit
from the German word die Einheit $=$ unit/unity
- $\mathrm{U}=$ neighborhood from the German word die Umgebung $=$ neighborhood
- $\mathrm{Z}_{\mathrm{r}}=$ the r -cycle group
$\& \mathrm{Z}^{\mathrm{r}}=$ the r -cocycle group
from the German word
der Zyklus = cycle
- $\mathbb{Z}=$ the set of integers
from the German word
die Zahl = number

GG49-25
\square sometimes
the corresponding letter in Greek is used for the notation instead of the first letter of the English name; the original word may have itself been in Latin or Greek eg

- $\alpha=$ angle
- $\varepsilon=$ initial letter of the Greek word $\varepsilon \sigma \tau \downarrow$ (see the Latin est $=$ is inside?) meaning 'is' and used to stand for 'is an element of ${ }^{\text {' }}$
- $\kappa=$ curvature
- $\lambda=$ Lagrange multiplier
- $\mu=$ mean
- $\pi=$ periphery $=$ circumference (of a circle with unit diameter)
- $\pi(\mathrm{x})=$ prime-counting function
- $\rho=$ radius of curvature
- $\sigma=$ simplex
- $\tau=$ torsion
- $\varphi=$ function
- $\varphi=$ denotation of the golden ratio;
so chosen in honor of
Phidias ($\Phi \varepsilon t \delta 1 \alpha \varsigma)$ of Athens
fl ca 490-430 BCE Greek
greatest sculptor of ancient Greece; supervised construction of Parthenon
- $\chi=$ characteristic
- $\Delta=$ difference
- $\Delta=$ discriminant
- $\Pi=$ product/production
- $\Sigma=$ sum/summation
- $\Phi=$ function
\square apparently
for some functions
the letter denotation came first and the name came from the letter eg
- the Kronecker delta $=\delta_{\mathrm{ij}}$ eg
- the Dirac delta function $=\delta(x)$
- the Riemann zeta function $=\zeta(\mathrm{z})$
- the Möbius mu function $=\mu(\mathrm{n})$
- the Euler phi function $=\varphi(\mathrm{n})$
- the Euler beta function $=B(x, y)$
- the Euler gamma function $=\Gamma(\mathrm{x})$

GG49-28
\square notation for Borel sets \& their classes
Δ letters for the classes of closed sets \& open sets in a topological space

- $\mathrm{F}=$ the class of closed sets
which comes from the initial letter of the French word fermé $=$ closed
- $G=$ the class of open sets which comes from the initial letter of the German word das Gebiet $=$ region
Δ letters for set-theoretic operators on classes of sets
- $\sigma=$ the countable union operator for a class of sets which is the lowercase form of the Greek letter sigma $\Sigma \sigma$ which is suggested by the initial letter of the following words
sum (English)
= la somme (French)
= die Summe (German)
= summa (Latin)
since ess \& sigma correspond
in sound \& transliteration
- $\delta=$ the countable intersection operator for a class of sets which is the lowercase form of
the Greek letter delta $\Delta \delta$
which is suggested by the initial letter of the German word der Durchschnitt = intersection since dee $\&$ delta correspond in sound \& transliteration

GG49-30
Δ the classes of Borel sets of index $<\omega$

GG49-31
\square to write a bold-face lowercase or capital letter, underline
eg

- boldface $\mathrm{a}=\mathbf{a}=\underline{a}$
- boldface $\mathrm{A}=\mathbf{A}=\underline{\mathrm{A}}$
note: letters denoting
vectors \& matrices are often printed in boldface type

GG49-32
\square capital script letters are sometimes useful; here are a few examples

- script $B=\boldsymbol{B}=$ filter-base
- script $C=C=$ Cauchy filter/filter-base
- script $C=C=$ cluster $=$ class of sets
- script $F=\boldsymbol{F}=$ filter
- script $I=\mathcal{I}=$ (coefficient of) imaginary part of
- script $\mathrm{N}=\mathcal{N}=$ neighborhood filter
- script $P=\boldsymbol{P}=$ power set of
- script $R=\mathcal{R}=$ real part of
- script $T=\boldsymbol{\mathcal { T }}=$ topology
note: cap script 'letter'
may be used to denote
the system whose base is denoted by cap Roman 'letter'
\square typographically ambiguous letters
Δ the three English letter forms of lowercase el = 1
capital oh = O
lowercase oh $=0$
are typo-ambiguous in that
the first letter resembles
the numeral one $=1$
\&
the second two letters resemble
the numeral zero $=0$
\& a pictograph for a circle which is a circle;
thus their use requires caution
- if lowercase el is to be suggestively used for 'length' say, it is to be recommended that the script lowercase el be used to distinguish it from the numeral one $=1$

GG49-34

- the use of cap oh O
for the origin of a coordinate system
is congenial
because
oh is the initial letter of 'origin' and all the coordinates of the origin are zero
- the use of cap oh O
for a general operation
with prefix notation
is congenial;
observe
$\mathrm{O}(\mathrm{x})$
$\mathrm{O}(\mathrm{x}, \mathrm{y})$
$\mathrm{O}(\mathrm{x}, \mathrm{y}, \mathrm{z})$
etc
wh O is from the initial letter of 'operation'
- the use of lowercase oh o (suspended) for a general binary operation with infix notation is congenial;
observe
x o y
wh o is the initial letter of 'operation'

GG49-35
Δ there is typo-ambiguity
between thirteen capital letters
of the Greek alphabet and capital letters
of the English /Latin alphabet
viz

- A = cap Greek alpha = cap English ay
- $\mathrm{B}=$ cap Greek beta = cap English bee
- $\mathrm{E}=$ cap Greek epsilon = cap English ee
- $\mathrm{Z}=$ cap Greek zeta = cap English zee
- $\mathrm{H}=$ cap Greek eta = cap English aitch
- I = cap Greek iota = cap English eye
- $\mathrm{K}=$ cap Greek kappa = cap English kay
- $\mathbf{M}=$ cap Greek $m u=$ cap English em
- $\mathrm{N}=$ cap Greek nu = cap English en
- $\mathrm{O}=$ cap Greek omicron = cap English oh
- $\mathrm{P}=$ cap Greek rho = cap English pe
- T = cap Greek tau = cap English tee
- $\mathrm{X}=$ cap Greek chi = cap English ex
Δ there is also typo-ambiguity with four lowercase letters:
- lowercase Greek kappa κ is similar to but not identical with lowercase English kay k
- $\mathrm{o}=$ lowercase Greek omicron
= lowercase English oh
- terminal lowercase Greek sigma ς is similar to
but not identical with lowercase English ess s
- lowercase Greek chi χ
is similar to
but not identical with
lowercase English ex x

GG49-37
\square some one-word section headings may be conveniently abbreviated by the capitalized initial letter followed by a period eg

- Axiom. $=\mathrm{A}$.
- Comment. = C.
- Corollary. = K. (phonetic value)
- Definition. = D.
- Example. = E.
- Lemma. = L.
- Note. $=\mathrm{N}$.
- Proof. = P .
- Question. = Q .
- Remark. = R.
- Theorem. = T .
\square to say that a letter notation
comes from the initial letter of a certain word may be fully \& historically correct only if the etymology of the word is considered as part of the word; here are two examples
- Euler was the first to use i as the imaginary unit whose square is -1 ; that occurred in 1777;
since he wrote in Latin,
to Euler i would be
the initial letter of the Latin word imaginarius = imaginary
from which the English word 'imaginary' descends
- the notation π for the circle ratio
was first used by
William Jones
1675-1749
Welsh
applied mathematician,
mathematics teacher \& expositor; that occurred in 1706;
π is the initial letter of the Greek word
$\pi \varepsilon \rho 1 \varphi \varepsilon \rho \omega=$ to carry around
from which the English word 'periphery' descends

