Initial Letters Provide Literal Notation

#49 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2001

GG49-1 (39)

© 2001 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

□ Names of Notions Nominate Notation

 the initial letters of names of objects often provide good efficient suggestive easy-to-remember literal notation for the notions under consideration; that general notational principle is illustrated in several ways in the following \Box first letters are good symbols

it has long been generally recognized that taking the first letter (lowercase or capital) of the name of a mathematical object (individual or species), or first letter of the principal word in a name phrase, as a symbol/sign (constant or variable) for this object is often sound notational practice eg

- a = angle
- A = algebra
- A_n = the alternating group on n objects
- A = angle
- A = area

- b = base length
- B_n or $B^n = n$ -ball
- B = Banach space
- B = base area
- B(n) = the nth Bell number
- B_n = the nth Bernoulli number
- B_r = the bounding r-cycle group
- B^r = the cobounding r-cocycle group

- c = cardinal of the continuum
- c = constant
- C_r = the r-chain group
- C^r = the r-cochain group
- C = circumference
- ${}_{n}C_{r}$ = the number of combinations of n things taken r at a time
- C = complex
- C = constant
- C = curve
- d = diameter
- d = difference
- d = differential/derivative
- D = derivative
- D = discriminant
- D = domain

- e = eccentricity
- e = base of exponential function
- E = entropy
- $f_n =$ the nth Fibonacci number
- f = function
- F = truth-value falsity
- F_n = the nth Fermat number
- F = field
- F = function

- g = genus
- G = group
- h = height
- h = homeomorphism
- H = Hamiltonian (from Hamilton)
- H_p or H^p = the Hardy space of index p
- H = Hessian (from Hesse)
- H_n = the nth harmonic number
- H = Hilbert space
- H_r = the r-homology group
- H^r = the r-cohomology group

- i = imaginary unit
- i = index
- I = identity matrix
- I = indicator
- I = integral
- I = interval
- J = Jacobian (from Jacobi)
- k = constant (phonetic value)
- K = complex (phonetic value)
- K = knot

- 1_p or 1^p = the Lebesgue sequence space of index p (note the script lowercase el)
- L = Lagrangian (from Lagrange)
- L_p or L^p = the Lebesgue function space of index p
- L = length
- m = mean
- m = measure
- m = modulus
- m = moment
- M = Turing machine
- M = manifold
- M = matrix
- M_n = the nth Mersenne number
- M = module
- M = monoid

- n = number
- N = norm
- N = number
- O = origin
- p = prime number
- p = proposition
- $_{n}P_{r}$ = the number of permutations of n things taken r at a time
- P = point
- P = polynomial
- q = quaternion
- Q = quadrant

- r = radial distance
- r = radian
- r = radius
- r = ratio
- R = range
- R = region
- R = relation
- s = semiperimeter
- s = side
- s = subtending arc
- S = space
- $S^n = n$ -sphere
- S = surface
- S = surface area

- t = time
- T = tensor
- T = transformation
- T = truth-value truth
- **u** = unit vector (note the boldface lowercase yu)
- v = velocity
- V = Vandermonde determinant
- V = variation
- V = vector space
- V = volume
- w = weight
- w = width
- W = Wronskian (from Wronski)

basic notation for sets / systems of numbers;
 this notation uses
 capital English letters in the open - face style;
 this notation is now more - or - less
 universally adopted in denoting
 the main line of number systems
 viz

 $\mathbb{P} \subset \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C} \subset \mathbb{I} \subset \mathbb{O}$

- \mathbb{P} = the set of all positive integers
- = the set of positive integers
- = the positive integer set
- = the positive integers
- = the semiring of positive integers
- \mathbb{N} = the set of all nonnegative integers
- = the set of nonnegative integers
- = the nonnegative integer set
- = the nonnegative integers
- = the semiring of nonnegative integers

- \mathbb{Z} = the set of all integers
- = the set of integers
- = the integer set
- = the integers
- = the ring of integers
- **Q** = the set of all rational numbers
- = the set of rational numbers
- = the rational number set
- = the rational numbers
- = the set of all rationals
- = the set of rationals
- = the rationals
- = the field of rational numbers

- \mathbb{R} = the set of all real numbers
- = the set of real numbers
- = the real number set
- = the real numbers
- = the set of all reals
- = the set of reals
- = the reals
- = the field of real numbers
- = the field of reals
- C = the set of all complex numbers
- = the set of complex numbers
- = the complex number set
- = the complex numbers
- = the field of complex numbers

- \square = the set of all quaternions
- = the set of quaternions
- = the quaternion set
- = the quaternions
- = the division ring of quaternions
- \mathbb{O} = the set of all octonions
- = the set of octonions
- = the octonion set
- = the octonions
- = the nonassociative noncommutative real linear algebra of octonions

- origin of notation
- $\mathbb{P} \leftarrow \text{ positive}$
- $\mathbb{N} \leftarrow \underline{n}$ onnegative, <u>n</u>atural, <u>n</u>umber
- $\mathbb{Z} \leftarrow \text{die } \underline{Z} \text{ahl} (\text{German}) = \text{number}$
- $\mathbb{Q} \leftarrow \text{quotient}$
- $\mathbb{R} \leftarrow \underline{r}eal$
- $\mathbb{G} \leftarrow \underline{c}omplex$
- $\square \leftarrow \underline{H}$ amilton = discoverer / inventor of quaternions

 $\mathbb{O} \leftarrow \underline{o}ctonion$

```
\Box the field of all complex algebraic numbers
```

- = the field of complex algebraic numbers
- = the complex algebraic number field

```
=_{dn} \mathbb{A}=_{rd} (open cap) aywh\mathbb{A} \leftarrow the initial letter of 'algebraic'
```

□ the field of all real algebraic numbers

- = the field of real algebraic numbers
- = the real algebraic number field

 $= \mathbb{A} \cap \mathbb{R}$ $=_{\mathrm{dn}} \mathbb{A}_{\mathrm{r}}$

wh

 $\mathbb{A}_r \leftarrow \mathbb{A}$ and the initial letter of 'real'

□ the ring of all Gaussian integers = the ring of Gaussian integers = the Gaussian integer ring =_{df} {m + inlm, n ∈ \mathbb{Z} } = \mathbb{Z} + i \mathbb{Z} =_{dn} \mathbb{G} =_{rd} (open cap) gee wh \mathbb{G} ← the initial letter of 'Gauss' □ the field with exactly pⁿ elements wh p ∈ prime & n ∈ pos int
= the field with pⁿ elements
= the field of order pⁿ
=_{dn} F(pⁿ)
=_{rd} (open cap) ef of pⁿ
wh
F ← the common initial letter of 'finite field'

note:

a field with only finitely many elements

- a field with exactly a prime power pⁿ
 of elements
- = a finite field
- = a Galois field

 \Box euclidean space of dimension n

wh $n \in nonneg int$

- = n dimensional euclidean space
- = euclidean n space
- $=_{dn} \mathbb{E}^n$
- $=_{rd}$ (open cap) ee (super) n

wh

 $\mathbb{E} \leftarrow$ the initial letter of 'euclidean' (from Euclid)

 \Box projective space of dimension n

- wh $n \in nonneg int$
- = n dimensional projective space
- = projective n-space
- $=_{dn} \mathbb{P}^n$
- $=_{rd}$ (open cap) pe (super) n

wh

 $\mathbb{P} \leftarrow$ the initial letter of 'projective'

 \Box the unit circle = the circle group =_{dn} T $=_{rd}$ (open cap) tee wh $\mathbb{T} \leftarrow$ the initial letter of 'torus' the circle being the 1-torus \Box the n - dimensional torus wh $n \in nonneg int$ = the n - torus = the n - toral group Tⁿ =_{dn} (open cap) tee (super) n =_{rd} wh $\mathbb{T} \leftarrow$ the initial letter of 'torus' □ sometimes initial letters of words from other languages make notational contributions; here are four examples from German:

• e = unit from the German word die Einheit = unit/unity

• U = neighborhood from the German word die Umgebung = neighborhood

• Z_r = the r-cycle group & Z^r = the r-cocycle group from the German word der Zyklus = cycle

• \mathbb{Z} = the set of integers from the German word die Zahl = number

□ sometimes the corresponding letter in Greek is used for the notation instead of the first letter of the English name; the original word may have itself been in Latin or Greek eg

• α = angle

• ε = initial letter of the Greek word $\varepsilon \sigma \tau \iota$ (see the Latin est = is inside?) meaning 'is' and used to stand for 'is an element of'

- κ = curvature
- λ = Lagrange multiplier
- μ = mean
- π = periphery = circumference (of a circle with unit diameter)
- $\pi(x)$ = prime-counting function

- ρ = radius of curvature
- σ = simplex
- τ = torsion
- ϕ = function

• φ = denotation of the golden ratio; so chosen in honor of Phidias ($\Phi \epsilon \iota \delta \iota \alpha \varsigma$) of Athens fl ca 490-430 BCE Greek greatest sculptor of ancient Greece; supervised construction of Parthenon

- χ = characteristic
- Δ = difference
- Δ = discriminant
- Π = product/production
- $\Sigma = \text{sum/summation}$
- Φ = function

□ apparently for some functions the letter denotation came first and the name came from the letter eg

- the Kronecker delta = δ_{ij} eg
- the Dirac delta function = $\delta(x)$
- the Riemann zeta function = $\zeta(z)$
- the Möbius mu function $= \mu(n)$
- the Euler phi function $= \varphi(n)$
- the Euler beta function = B(x, y)
- the Euler gamma function = $\Gamma(x)$

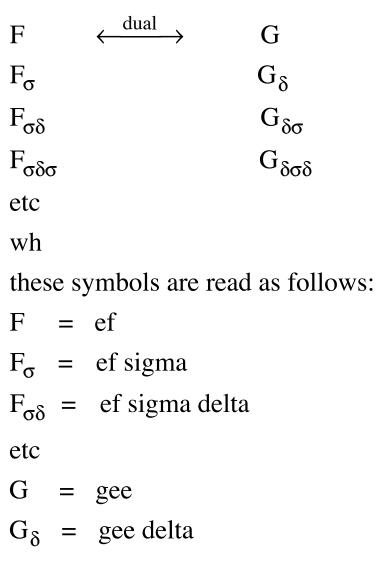
 \Box notation for Borel sets & their classes

 Δ letters for the classes of closed sets & open sets in a topological space

• F = the class of closed sets which comes from the initial letter of the French word fermé = closed

• G = the class of open sets which comes from the initial letter of the German word das Gebiet = region

 Δ letters for set-theoretic operators on classes of sets


σ = the countable union operator for a class of sets which is the lowercase form of the Greek letter sigma Σ σ which is suggested by the initial letter of the following words sum (English) = la somme (French) = die Summe (German) = summa (Latin)

since ess & sigma correspond

in sound & transliteration

• δ = the countable intersection operator for a class of sets which is the lowercase form of the Greek letter delta $\Delta \delta$ which is suggested by the initial letter of the German word der Durchschnitt = intersection since dee & delta correspond in sound & transliteration

 Δ the classes of Borel sets of index < ω

 $G_{\delta\sigma}$ = gee delta sigma etc

□ to write a bold-face lowercase or capital letter, underline eg

- boldface $a = a = \underline{a}$
- boldface $A = A = \underline{A}$

note: letters denoting vectors & matrices are often printed in boldface type

□ capital script letters are sometimes useful; here are a few examples

- script B = \mathcal{B} = filter-base
- script C = C = Cauchy filter/filter-base
- script C = C = cluster = class of sets
- script F = T = filter
- script I = $\mathbf{1}$ = (coefficient of) imaginary part of
- script N = \mathcal{N} = neighborhood filter
- script P = $\boldsymbol{\mathcal{P}}$ = power set of
- script R = \mathcal{R} = real part of
- script T = T = topology

note: cap script 'letter' may be used to denote the system whose base is denoted by cap Roman 'letter'

□ typographically ambiguous letters

```
\Delta the three English letter forms of
lowercase el = 1
capital oh = O
lowercase oh = o
are typo-ambiguous in that
the first letter resembles
the numeral one = 1
&
the second two letters resemble
the numeral zero = 0
& a pictograph for a circle
which is a circle;
thus their use requires caution
```

• if lowercase el is to be suggestively used for 'length' say, it is to be recommended that the script lowercase el be used to distinguish it from the numeral one = 1

• the use of cap oh O for the origin of a coordinate system is congenial because oh is the initial letter of 'origin' and all the coordinates of the origin are zero

the use of cap oh O for a general operation with prefix notation is congenial; observe O(x) O(x, y) O(x, y, z) etc wh O is from the initial letter of 'operation'

the use of lowercase oh o (suspended) for a general binary operation with infix notation is congenial; observe x o y

 Δ there is typo-ambiguity between thirteen capital letters of the Greek alphabet and capital letters of the English /Latin alphabet viz

- A = cap Greek alpha = cap English ay
- B = cap Greek beta = cap English bee
- E = cap Greek epsilon = cap English ee
- Z = cap Greek zeta = cap English zee
- H = cap Greek eta = cap English aitch
- I = cap Greek iota = cap English eye
- K = cap Greek kappa = cap English kay
- M = cap Greek mu = cap English em
- N = cap Greek nu = cap English en
- O = cap Greek omicron = cap English oh
- P = cap Greek rho = cap English pe
- T = cap Greek tau = cap English tee
- X = cap Greek chi = cap English ex GG49-36

 Δ there is also typo-ambiguity with four lowercase letters:

 lowercase Greek kappa κ is similar to but not identical with lowercase English kay k

• o = lowercase Greek omicron

= lowercase English oh

• terminal lowercase Greek sigma ς is similar to but not identical with lowercase English ess s

• lowercase Greek chi χ is similar to but not identical with lowercase English ex x □ some one-word section headings may be conveniently abbreviated by the capitalized initial letter followed by a period eg

- Axiom. = A.
- Comment. = C.
- Corollary. = K. (phonetic value)
- Definition. = D.
- Example. = E.
- Lemma. = L.
- Note. = N.
- Proof. = P.
- Question. = Q.
- Remark. = R.
- Theorem. = T.

□ to say that a letter notation comes from the initial letter of a certain word may be fully & historically correct only if the etymology of the word is considered as part of the word; here are two examples

• Euler was the first to use i as the imaginary unit whose square is -1; that occurred in 1777; since he wrote in Latin, to Euler i would be the initial letter of the Latin word imaginarius = imaginary from which the English word 'imaginary' descends

• the notation π for the circle ratio was first used by William Jones 1675-1749 Welsh applied mathematician, mathematics teacher & expositor; that occurred in 1706; π is the initial letter of the Greek word $\pi\epsilon\rho\iota\phi\epsilon\rho\omega =$ to carry around from which the English word 'periphery' descends GG49-39