The Four Functions in the Del

#46 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2001

GG46-1 (10)

© 2001 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG46-2

 \Box the del operator

• the del operator $=_{dn} \nabla$ $=_{rd} del \leftarrow inverted delta$ $=_{df}$ the partial derivative operator

$$\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

which converts a scalar field over a region in 3- space into a 3- vector field over that region wh x, y, z are

3 - dimensional rectangular coordinate variables

- the del
- = the inverted delta

 $= \nabla$

is also called the nabla

presumably because of its resemblance in shape to

the ancient Hebrew harp,

a stringed instrument of ten or twelve strings

which has the name nabla & also the symbol ∇

\Box the

• gradientdel ∇ • divergencedel dot ∇ •• curldel cross $\nabla \times$ • laplaciandel square ∇^2

form

the four functions in the del aka the four del-based operators

\Box the table

- gradient grad
- divergence div
- curl curl
- laplacian lap

displays

the syllabus of single syllables for the four del-based operators □ the four transformations of scalar / vector fields under the action of the del- based operators

the operator	operates upon a	to produce a
1.	1 (* 11	C • 1 1
 gradient 	scalar field	vector field
• divergence	vector field	scalar field
• curl	vector field	vector field
• laplacian	scalar field	scalar field

geometrical / physical catchphrases
 for the information provided by
 the four del - based operators

- gradient points uphill
- divergence is emergence
- curl is swirl
- laplacian measures
 local average value
 minus
 central value

□ all four del - based operators have highly significant uses in mathematics; it hardly makes sense to ask which is ' the most important' in mathematics; they are all important; however it has been claimed that the laplacian is by far the most important differential operator in mathematical physics; here is a single example to help bolster that claim \Box the wave equation

is a second - order partial differential equation using the laplacian & is here given in two notations

•
$$\nabla^2 \varphi = \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}$$

• $\Box \phi = 0$

 $\mathbf{w}\mathbf{h}$

 $\varphi = \varphi(x, y, z, t)$ is a scalar - valued function of position (x, y, z) & time t and c is a constant; the d' Alembertian \Box is defined to be the partial differential operator

$$\Box = \nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$$

GG46-10