Math Medley
 \#45 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG45-1 (30)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited
\square unified product rule for derivatives
Δ to differentiate a product, differentiate each factor separately \& add
Δ applications

- product of any number of real/complex functions
- scalar product of two vectors
- vector product of two 3 -vectors
- triple scalar product of three 3 -vectors
- triple vector product of three 3 -vectors
- multiple vector products of 3 -vectors
- determinant of any order (op on rows or cols)
- etc
Δ the uniformity of this product rule comes from the multilinearity of these products
T. let
$\mathrm{f} \in$ real - valued function on a real interval
then
$\mathrm{f} \in$ differentiable
\Downarrow
$\mathrm{f} \in$ continuous
\Downarrow
$\mathrm{f} \in$ integrable
\&
all converses fail

GG45-4

D. a Leibniz series

$=_{\mathrm{df}}$ an alternating series
$a_{0}-a_{1}+a_{2}-a_{3}+\cdots$
of positive real numbers
$a_{0}, a_{1}, a_{2}, a_{3}, \cdots$
st
$\mathrm{a}_{\mathrm{n}} \geq \mathrm{a}_{\mathrm{n}+1} \quad(\mathrm{n} \in$ nonneg int var)
\&
$\mathrm{a}_{\mathrm{n}} \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$
T. every Leibniz series converges
T. the harmonic series diverges
P. otherwise

S
$=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\cdots$
$=\left(1+\frac{1}{2}\right)+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+\frac{1}{6}\right)+\cdots$
$>\left(\frac{1}{2}+\frac{1}{2}\right)+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{6}+\frac{1}{6}\right)+\cdots$
$=1+\frac{1}{2}+\frac{1}{3}+\cdots$
$=\mathrm{s}$
\& $\mathrm{s}>\mathrm{s}$
\therefore the harmonic series diverges QED

\square an interesting inequality

T. $\sum_{\mathrm{k}=1}^{\mathrm{n}} \frac{1}{\sqrt{\mathrm{k}}}>\sqrt{\mathrm{n}} \quad(\mathrm{n} \in \operatorname{int} \geq 2)$
P. note that
$\frac{1}{\sqrt{\mathrm{k}}}>\sqrt{\mathrm{k}}-\sqrt{\mathrm{k}-1}$ for $\mathrm{k} \geq 2$
\&
a telescoping sum results from substitution QED
\square a theorem
whose proof from the analytic POV
is not immediate but which is evident from the geometric POV
T. let

- $\mathrm{a}, \mathrm{b} \in$ real nos st $\mathrm{a}<\mathrm{b}$
- $\mathrm{y}=\mathrm{y}(\mathrm{x}), 0 \leq \mathrm{x} \leq \mathrm{a}$ \&
$\mathrm{x}=\mathrm{x}(\mathrm{y}), 0 \leq \mathrm{y} \leq \mathrm{b}$
\in inverse strictly increasing continuous real functions
then
- $\int_{0}^{a} y d x+\int_{0}^{b} x d y=a b$
T. the fundamental theorem for space curves let
- $\mathrm{s}=$ arclength
- $\kappa=$ curvature
- $\tau=$ torsion
- $\kappa=\kappa(s) \geq 0$ \& $\tau=\tau(s)$
\in given continuous real - valued functions on a real interval
then
- there exists a class C^{2} space curve, unique up to rigid motion, with the given curvature $\kappa=\kappa(s)$ \&
with the given torsion $\tau=\tau$ (s)

GG45-9

\square four forms of the Dirichlet

 box / drawer / pigeonhole principle(1) if $n+1$ objects are placed in n boxes where n is a positive integer, then at least one box contains at least two objects
(2) if X and Y are sets of any cardinality such that $\operatorname{crd} \mathrm{X}>\operatorname{crd} \mathrm{Y}$, and if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, then there exists $y \in Y$ such that $\operatorname{crdf}^{-1}(y)>1$
(3) if infinitely many objects are placed in finitely many boxes, then at least one box contains infinitely many objects
(4) if X is an infinite set, if Y is a finite set, and if $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, then there exists $y \in Y$ such that $f^{-1}(y)$ is an infinite set
(2) is a set - theoretic generalization of (1);
(4) is a set - theoretic equivalent of (3)

GG45-10

Question.
Is the following statement mathematically true?
If there are more trees in the world than there are leaves on any one tree, then there are at least two trees
with the same number of leaves.
Answer. Not as it stands.
It is true under three additional conditions, namely: there are only finitely many trees in the world, there is at least one tree in the world, every tree has at least one leaf.

\square Lagrange' s identity for vectors

T. Lagrange' s identity for two 2 - vectors

 let$\mathbf{a}, \mathbf{b} \in 2$ - vectors over a com ring
then
$\left|\mathbf{a}, \mathbf{b}^{2}=\right| \begin{array}{ll}\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b}\end{array}$

GG45-12
T. Lagrange' s identity for two 3 - vectors let
$\mathbf{a}, \mathbf{b} \in 3$ - vectors over a com ring
then
$(\mathbf{a} \times \mathbf{b})^{2}=\left|\begin{array}{cc}\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b}\end{array}\right|$

T. Lagrange's identity for two vectors

let
$\mathbf{a}, \mathbf{b} \in \mathrm{n}-$ vectors over a com ring ($\mathrm{n} \in \operatorname{pos}$ int)
then

- in scalar notation
$\sum_{\substack{i, j=1 \\ i<j}}^{n}\left|\begin{array}{ll}a_{i} & a_{j} \\ b_{i} & b_{j}\end{array}\right|^{2}=\left|\begin{array}{ll}\sum_{i=1}^{n} a_{i}^{2} & \sum_{i=1}^{n} a_{i} b_{i} \\ \sum_{i=1}^{n} a_{i} b_{i} & \sum_{i=1}^{n} b_{i}^{2}\end{array}\right|$
- in vector notation
$\frac{1}{2}(\mathbf{a b}-\mathbf{b a})^{2}=\left|\begin{array}{ll}\mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b}\end{array}\right|$

GG45-14
T. Lagrange' s identity for four 2 - vectors let
$\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in 2$ - vectors over a com ring
then
$|\mathbf{a}, \mathbf{b}| \cdot|\mathbf{c}, \mathbf{d}|=\left|\begin{array}{ll}\mathbf{a} \cdot \mathbf{c} & \mathbf{a} \cdot \mathbf{d} \\ \mathbf{b} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{d}\end{array}\right|$

GG45-15

T. Lagrange' s identity for four 3-vectors let

$\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in 3-$ vectors over a com ring
then
$(\mathbf{a} \times \mathbf{b}) \cdot(\mathbf{c} \times \mathbf{d})=\left|\begin{array}{ll}\mathbf{a} \cdot \mathbf{c} & \mathbf{a} \cdot \mathbf{d} \\ \mathbf{b} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{d}\end{array}\right|$
T. Lagrange's identity for four vectors let
$\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in \mathrm{n}-$ vectors over a com ring ($\mathrm{n} \in \operatorname{pos}$ int) then

- in scalar notation
$\sum_{\substack{i, j=1 \\ i<j}}^{n}\left|\begin{array}{ll}a_{i} & a_{j} \\ b_{i} & b_{j}\end{array}\right| \cdot\left|\begin{array}{cc}c_{i} & c_{j} \\ d_{i} & d_{j}\end{array}\right|=\left|\begin{array}{ll}\sum_{i=1}^{n} a_{i} c_{i} & \sum_{i=1}^{n} a_{i} d_{i} \\ \sum_{i=1}^{n} b_{i} c_{i} & \sum_{i=1}^{n} b_{i} d_{i}\end{array}\right|$
- in vector notation

$$
(\mathbf{a b}-\mathbf{b a}) \cdot(\mathbf{c d}-\mathbf{d c})=2\left|\begin{array}{ll}
\mathbf{a} \cdot \mathbf{c} & \mathbf{a} \cdot \mathbf{d} \\
\mathbf{b} \cdot \mathbf{c} & \mathbf{b} \cdot \mathbf{d}
\end{array}\right|
$$

T. Cauchy - Riemann equations
 = CRE

let

- $x, y, u, v \in$ real var
- $\mathrm{z}, \mathrm{w} \in$ complex var
- $x+i y=z$
- $u+i v=w$
- $\mathrm{w}=\mathrm{w}(\mathrm{z})$
- $\exists \frac{\mathrm{dw}}{\mathrm{dz}}$
then

$$
\left\{\begin{array}{l}
\mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}} \\
\mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}
\end{array}\right.
$$

P. in three parts
(1) $\frac{d w}{d z}$
$=\frac{\partial w}{\partial x}$
$=\frac{\partial}{\partial x}(u+i v)$
$=\mathrm{u}_{\mathrm{x}}+\mathrm{iv} \mathrm{x}_{\mathrm{x}}$
(2) $\frac{d w}{d z}$
$=\frac{\partial w}{\partial(i y)}$
$=\frac{\partial}{\partial(i y)}(u+i v)$
$=\frac{1}{i} \frac{\partial}{\partial y}(u+i v)$
$=\frac{1}{\mathrm{i}}\left(\mathrm{u}_{\mathrm{y}}+\mathrm{iv} \mathrm{v}_{\mathrm{y}}\right)$
$=\mathrm{v}_{\mathrm{y}}-\mathrm{i} \mathrm{u}_{\mathrm{y}}$
(3) $u_{x}+i v_{x}$
$=\frac{\mathrm{d} \mathrm{w}}{\mathrm{dz}}$
$=\mathrm{v}_{\mathrm{y}}-\mathrm{i} \mathrm{u}_{\mathrm{y}}$
$\therefore \mathrm{u}_{\mathrm{x}}=\mathrm{v}_{\mathrm{y}} \& \mathrm{u}_{\mathrm{y}}=-\mathrm{v}_{\mathrm{x}}$ qed
K. the Jacobian of (u, v) wrt (x, y)
$=\operatorname{det} \frac{\partial(u, v)}{\partial(x, y)}$
$=\left|\begin{array}{ll}u_{x} & u_{y} \\ v_{x} & v_{y}\end{array}\right|$
$=u_{x} v_{y}-u_{y} v_{x}$
$=u_{x}^{2}+v_{x}^{2}$
$=u_{y}{ }^{2}+v_{y}^{2}$
$=\mathrm{u}_{\mathrm{x}}{ }^{2}+\mathrm{u}_{\mathrm{y}}{ }^{2}$
$=\mathrm{v}_{\mathrm{x}}{ }^{2}+\mathrm{v}_{\mathrm{y}}{ }^{2}$
$=\left|\frac{\mathrm{dw}}{\mathrm{dz}}\right|^{2}$
≥ 0
\square the law of inclusion - exclusion for finite sets
Δ law of inclusion-exclusion for two finite sets A,B

- $\operatorname{crd}(\mathrm{A} \cup \mathrm{B})=\operatorname{crd} \mathrm{A}+\operatorname{crd} \mathrm{B}-\operatorname{crd}(\mathrm{A} \cap \mathrm{B})$
Δ law of inclusion- exclusion for three finite sets A, B, C
- $\operatorname{crd}(\mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
$=\operatorname{crd} \mathrm{A}+\operatorname{crd} \mathrm{B}+\operatorname{crdC}$
$-\operatorname{crd}(\mathrm{A} \cap \mathrm{B})-\operatorname{crd}(\mathrm{A} \cap \mathrm{C})-\operatorname{crd}(\mathrm{B} \cap \mathrm{C})$
$+\operatorname{crd}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
Δ law of inclusion - exclusion for n finite sets $\mathrm{A}_{1}, \mathrm{~A}_{2}, \cdots, \mathrm{~A}_{\mathrm{n}} \quad(\mathrm{n} \in$ pos int)
- $\operatorname{crd} \bigcup_{i=1}^{n} A_{i}$
$=\sum_{\mathrm{i}=1}^{\mathrm{n}} \operatorname{crd} \mathrm{A}_{\mathrm{i}}$
$-\sum_{\substack{\mathrm{i}, \mathrm{j}=1 \\ \mathrm{i}<\mathrm{j}}}^{\mathrm{n}} \operatorname{crd}\left(\mathrm{A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}}\right)$
$+\sum_{i=1}^{n} \operatorname{crd}\left(\mathrm{~A}_{\mathrm{i}} \mathrm{A}_{\mathrm{j}} \mathrm{A}_{\mathrm{k}}\right)$
$\mathrm{i}, \mathrm{j}, \mathrm{k}=1$ $\mathrm{i}<\mathrm{j}<\mathrm{k}$
—•••
$+(-1)^{\mathrm{n}+1} \operatorname{crd}\left(\mathrm{~A}_{1} \mathrm{~A}_{2} \cdots \mathrm{~A}_{\mathrm{n}}\right)$

GG45-23
\square the general law of inclusion-exclusion not only holds for finite cardinality but also holds for the measure of finitely many sets of finite measure in a finitely additive measure space and also holds for the indicator applied to finitely many sets (these sets finite or not); the cases of $2 \& 3$ sets
are given below

GG45-24
\square the law of inclusion-exclusion for the measure of two sets A, B
\& of three sets A, B, C, all of finite measure in a finitely additive measure space

- $\mathrm{m}(\mathrm{A} \cup \mathrm{B})=\mathrm{mA}+\mathrm{mB}-\mathrm{m}(\mathrm{A} \cap \mathrm{B})$
- $m(A \cup B \cup C)$
$=m A+m B+m C$
$-m(A \cap B)-m(A \cap C)-m(B \cap C)$
$+\mathrm{m}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$
\square the law of inclusion - exclusion for the indicator applied to two sets A, B \& applied to three sets A, B, C
- $\mathrm{I}(\mathrm{x}, \mathrm{A} \cup \mathrm{B})=\mathrm{I}(\mathrm{x}, \mathrm{A})+\mathrm{I}(\mathrm{x}, \mathrm{B})-\mathrm{I}(\mathrm{x}, \mathrm{A} \cap \mathrm{B})$
- $\mathrm{I}(\mathrm{x}, \mathrm{A} \cup \mathrm{B} \cup \mathrm{C})$
$=\mathrm{I}(\mathrm{x}, \mathrm{A})+\mathrm{I}(\mathrm{x}, \mathrm{B})+\mathrm{I}(\mathrm{x}, \mathrm{C})$
$-I(x, A \cap B)-I(x, A \cap C)-I(x, B \cap C)$
$+\mathrm{I}(\mathrm{x}, \mathrm{A} \cap \mathrm{B} \cap \mathrm{C})$

\square relative strengths

 of the inclusion-exclusion lawsthe law for the indicator implies
the law for measure implies
the law for cardinality

GG45-27
\square the Heisenberg indeterminacy / uncertainty principle applies to a particle

$$
\begin{aligned}
& \Delta \mathrm{q} \Delta \mathrm{p} \geq \mathrm{h} / 2 \pi \\
& \& \\
& \Delta \mathrm{t} \Delta \mathrm{E} \geq \mathrm{h} / 2 \pi \\
& \text { wh } \\
& \Delta=\text { error in measurement of } \\
& \mathrm{q}=\text { position coordinate } \\
& \mathrm{p}=\text { momentum } \\
& \mathrm{t}=\text { time } \\
& \mathrm{E}=\text { energy } \\
& \mathrm{h}=\text { Planck's constant }
\end{aligned}
$$

- bioline

Werner Karl Heisenberg
1901-1976

German

theoretical physicist

GG45-28
\square a guiding principle

- the drive toward brevity:
to say more \& more
in less \& less
time \& space
because
we have lots to say
\&
we have little
time \& space
to say it in

GG45-29
\square the exposition of mathematics
= mathematical exposition
= mathematics exposition
is
an art form
\&
should be
a work of art

GG45-30

