Extremely Valuable Mean Value Theorems

\#43 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms
of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG43-1 (19)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

T. Rolle' s Theorem

 let

- $f:$: $[a, b] \rightarrow$ R
- $\mathrm{f} \in$ cont on $\mathbb{R}[\mathrm{a}, \mathrm{b}]$
- $f \in \operatorname{diff}$ on $\mathfrak{B}(a, b)$
- $\mathrm{f}(\mathrm{a})=\mathrm{f}(\mathrm{b})$
then
- $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=0 \quad\left(\exists \mathrm{x}_{0} \in \mathbb{R}(\mathrm{a}, \mathrm{b})\right)$

GG43-3

T. RT (verbal version)

consider a real-valued function that is

- defined on a plural bounded closed real interval
- continuous on the closed interval
- differentiable on the open interval
- equal at the endpoints of the interval
then the derivative of the function vanishes at some point of the open interval

$\square \mathrm{GI}$ of RT

some internal tangent line is horizontal

GG43-5

T．One－Function Mean Value Theorem for Derivatives let

- $a, b \in$ 思 $s t a<b$
- $\mathrm{f}:$ 尽 $[\mathrm{a}, \mathrm{b}] \rightarrow$ 爵
－$f \in$ cont on ${ }^{\Omega}[a, b]$
－$f \in \operatorname{diff}$ on 思 (a, b)
then
－ $\mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)=\frac{\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})}{\mathrm{b}-\mathrm{a}}$
\＆
$\mathrm{f}(\mathrm{b})-\mathrm{f}(\mathrm{a})=(\mathrm{b}-\mathrm{a}) \mathrm{f}^{\prime}\left(\mathrm{x}_{0}\right)$
$\left(\exists x_{0} \in\right.$ 爵 $\left.(a, b)\right)$

T. 1FMVTD (verbal version)

consider a real-valued function that is

- defined on a plural bounded closed real interval
- continuous on the closed interval
- differentiable on the open interval
then the derivative of the function at some point of the open interval equals the slope of the chord joining the endpoints of the graph of the function

\square GI of 1FMVTD

some internal tangent line is parallel to the chord

T．Two－Function Mean Value Theorem for Derivatives let

- $a, b \in$ 爵 $s t a<b$
- $\mathrm{f}, \mathrm{g}:$ 邑 $[\mathrm{a}, \mathrm{b}] \rightarrow$ 周
－$f, g \in$ cont on $\mathrm{R}_{\mathrm{B}}[\mathrm{a}, \mathrm{b}]$
－$f, g \in \operatorname{diff}$ on $\mathrm{R}_{\mathrm{R}}(\mathrm{a}, \mathrm{b})$
－$g(a) \neq g(b)$
－ $\mathrm{f}^{\prime}(\mathrm{x}) \neq 0 \quad \vee \mathrm{~g}^{\prime}(\mathrm{x}) \neq 0 \quad(\forall \mathrm{x} \in$ 䍐 $(\mathrm{a}, \mathrm{b}))$
then
－$\frac{f^{\prime}\left(x_{0}\right)}{g^{\prime}\left(x_{0}\right)}=\frac{f(b)-f(a)}{g(b)-g(a)} \quad\left(\exists x_{0} \in\right.$ 尽 $\left.(a, b)\right)$

T. 2FMVTD (verbal version)

consider two real-valued functions that are

- defined on a plural bounded closed real interval
- continuous on the closed interval
- differentiable on the open interval and which are such that
- the second function has unequal values
at the endpoints of the interval
- the derivatives of the two functions
do not simultaneously vanish
anywhere in the open interval
then the ratio of the derivatives
at some point of the open interval equals the ratio of the functional value differences at the endpoints of the interval

\square GI of 2FMVTD

at some internal point
ratio of derivatives
equals
ratio of slopes of chords

GG43-11

T．One－Function Mean Value Theorem for Integrals let

- $a, b \in$ 罥 $s t a<b$
- $\mathrm{f}:$ 路 $[\mathrm{a}, \mathrm{b}] \rightarrow$ 爵
－$f \in$ cont on $\mathbb{R}^{[}[a, b]$
then
－ $\mathrm{f}\left(\mathrm{x}_{0}\right)=\frac{1}{\mathrm{~b}-\mathrm{a}} \int_{\mathrm{a}}^{\mathrm{b}} \mathrm{f}(\mathrm{x}) \mathrm{dx}$
\＆
$\int_{a}^{b} f(x) d x=(b-a) f\left(x_{0}\right)$
$\left(\exists x_{0} \in\right.$ 思 $\left.(a, b)\right)$

T. 1FMVTI (verbal version)

the definite integral
of a continuous real-valued function
over a plural bounded closed real interval
equals
the length of the interval
times
some internal functional value

GG43-13
\square statistical interpretation of 1FMVTI

- the average / mean value of the continuous real-valued function $\mathrm{f}(\mathrm{x})$ on the interval $\quad[\mathrm{a}, \mathrm{b}]$
$={ }_{d f} \frac{1}{b-a} \int_{a}^{b} f(x) d x$
- 1FMVTI
$\frac{1}{b-a} \int_{a}^{b} f(x) d x=f\left(x_{0}\right)$
says that
the function assumes its mean value at an interior point
\square GI of 1FMVTI

1FMVTI

$\int_{a}^{b} f(x) d x=(b-a) f\left(x_{0}\right)$
says that
area under curve
equals
area of rectangle
based on interval
and with some interior ordinate as height

GG43-15

T．Two－Function Mean Value Theorem for Integrals let
－ $\mathrm{a}, \mathrm{b} \in \mathrm{R}_{\mathrm{R}} \mathrm{st} \mathrm{a}<\mathrm{b}$
－f，g ：㺼 $[\mathrm{a}, \mathrm{b}] \rightarrow$ 㺼
－$f, g \in$ cont on $\mathbb{R}[a, b]$
－$g \in$ nonneg on ${ }^{\Omega}[a, b]$
or
$\mathrm{g} \in \operatorname{nonpos}$ on 思 $[\mathrm{a}, \mathrm{b}]$
then
－ $\int_{a}^{b} f(x) g(x) d x=f\left(x_{0}\right) \int_{a}^{b} g(x) d x \quad\left(\exists x_{0} \in \Omega(a, b)\right)$

T. 2FMVTI (verbal version)

consider two continuous real-valued functions on a plural bounded closed real interval with the second function
nonnegative or nonpositive on the interval
then the integral of the product of the functions over the interval
equals
some interior value of the first function
times
the integral of the second function
over the interval

GG43-17

\square GI of 2FMVTI

is more elaborate

- think of
a 3-dimensional rectangular xyz-coordinate system
- think of the graph of
$y=f(x), a \leq x \leq b$
as a curve in the $x y$ - plane
- think of the graph of
$\mathrm{z}=\mathrm{g}(\mathrm{x}), \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$
as a curve in the xz - plane

GG43-18

- this MVT

LHS = RHS

expresses the equality of the volumes of two solids

- each solid is based on the region ' under' the curve
$\mathrm{z}=\mathrm{g}(\mathrm{x}), \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$
and is contained in octant I
- each solid has rectangular cross - sections perpendicular to the x -axis with sides in the xy - plane $\&$ in the xz - plane
- the solid whose volume is the LHS
has rectangular cross - section with variable base $\mathrm{g}(\mathrm{x}), \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$ and with variable height $\mathrm{f}(\mathrm{x}), \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$
- the solid whose volume is the RHS
has rectangular cross - section
with variable base $\mathrm{g}(\mathrm{x}), \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$
and with constant height $\mathrm{f}\left(\mathrm{x}_{0}\right)$

