All Good Things Come In Three's

\#42 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG42-1 (113)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited
\square the three classical means

- the arithmetic mean of a and b
$=\frac{a+b}{2}$
$=$ the logarithm of the geometric mean of the exponentials of a and b
- the geometric mean of a and b
$=\sqrt{\mathrm{ab}}$
$=$ the exponential of the arithmetic mean of the logarithms of a and b
- the harmonic mean of a and b
$=\frac{2 \mathrm{ab}}{\mathrm{a}+\mathrm{b}}$
$=$ the reciprocal of the arithmetic mean of the reciprocals of a and b

GG42-3
\square the rule of three
is
a rule for solving a simple proportion problem that appeared
in the early history of mathematics
and continued into more recent even modern times;
the idea goes back to the ancient Egyptians;
the explicit rule popped up in China and India ca 600 CE,
and had spread itself in print
across Western Europe by ca 1500;
no doubt many merchants around the world
have been using the rule more or less automatically
for as long as commerce has existed;
the name comes from the fact that
three quantities are given
and one is to be determined;
in modern algebraic garb
the rule of three
is the following equivalence
whose LHS is
a proportion = an equality of ratios

$$
\mathrm{x}: \mathrm{a}=\mathrm{b}: \mathrm{c} \Leftrightarrow \mathrm{x}=(\mathrm{ab}) / \mathrm{c}
$$

a somewhat weaker formulation of the rule of three is that
in a proportion
the product of the means
equals
the product of the extremes

- double rule of three
a double rule of three (there are many forms) contains several direct and inverse variations; here is a generalized modernized example whose prototype appeared in the book Liber abaci (1202) (Latin) (= Book of Calculations) by Leonardo of Pisa
= Leonardo Fibonacci
= Fibonacci

Problem. x horses eat y barley quarts in z days
whence $f(x, y)=z$;
given $f(a, b)=c$, find $f(A, B)$

Solution. call $\mathrm{f}(\mathrm{A}, \mathrm{B})=\mathrm{C}$; now in the nature of the problem
$f(k x, y)=\frac{1}{k} f(x, y)$
\&
$f(x, k y)=k f(x, y) ;$

GG42-6

$$
\begin{aligned}
& \text { hence } \\
& =\mathrm{C} \\
& =\mathrm{f}(\mathrm{~A}, \mathrm{~B}) \\
& =\mathrm{f}\left(\frac{\mathrm{~A}}{\mathrm{a}} \mathrm{a}, \frac{\mathrm{~B}}{\mathrm{~b}} \mathrm{~b}\right) \\
& =\frac{\mathrm{a}}{\mathrm{~A}} \frac{\mathrm{~B}}{\mathrm{~b}} \mathrm{f}(\mathrm{a}, \mathrm{~b}) \\
& =\frac{\mathrm{aBc}}{\mathrm{Ab}} \\
& \& \\
& \mathrm{C}=\frac{\mathrm{aBc}}{\mathrm{Ab}} \\
& \text { which could also be written } \\
& \frac{\mathrm{a}}{\mathrm{~A}} \times \frac{\mathrm{B}}{\mathrm{~b}}=\frac{\mathrm{C}}{\mathrm{c}} \\
& \text { which shows the nature of the variations }
\end{aligned}
$$

GG42-7

- to see how the single rule of three
is related to a double rule of three, the earlier version of the single rule of three needs to be restated in the following form; let us take a simple example

Problem. x apples cost y cents whence $f(x)=y$;
given $f(a)=b$, find $f(A)$

Solution. call $f(A)=B$;
now in the nature of the problem
$f(k x)=k f(x) ;$

$$
\begin{aligned}
& \text { hence } \\
& \begin{array}{l}
B \\
=f(A) \\
=f\left(\frac{A}{a} a\right) \\
=\frac{A}{a} f(a) \\
=\frac{A b}{a} \\
\&
\end{array}
\end{aligned}
$$

$$
B=\frac{A b}{a}
$$

which also could be written

$$
\frac{A}{a}=\frac{B}{b}
$$

which is the earlier recognized kind of proportion

- I first heard of the double rule of three in the following common measure sestet:

He thought he saw a Garden-Door
That opened with a key:
He looked again, and found it was
A Double Rule of Three:
'And all its mystery,' he said,
'Is clear as day to me!'
from Sylvie and Bruno
by Lewis Carroll

GG42-10

ㅁ pythagorean triples
a pythagoreran triple
$=\mathrm{df}$ an ordered triple $(\mathrm{a}, \mathrm{b}, \mathrm{c})$
of positive integers st
$a^{2}+b^{2}=c^{2}$
or equivalently
an ordered triple (a, b, c)
of positive integers a, b, c that are
the lengths of the legs and the hypotenuse
of a right triangle
whence the name
pythagorean triple
which is suggested by the name
pythagorean theorem

GG42-11
every triple (a, b, c) st
$\mathrm{a}=\lambda\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)$
$\mathrm{b}=2 \lambda \mathrm{mn}$
$\mathrm{c}=\lambda\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right)$
wh $\mathrm{m}, \mathrm{n}, \lambda$ are positive integers with $\mathrm{m}>\mathrm{n}$
is a pythagorean triple;
conversely
every pythagorean triple ($\mathrm{a}, \mathrm{b}, \mathrm{c}$)
is of this form
with the possible interchange of the first two entries

GG42-12
for a pythagorean triple ($\mathrm{a}, \mathrm{b}, \mathrm{c}$)
not both a and b are odd
\&
any common factor of two of a, b, c
is also a factor of the third
and when divided out the resulting quotients
still constitute a pythagorean triple
\&
(b, a, c) is also a pythagorean triple;
this suggests the definition
a primitive pythagorean triple
$=$ df a pythagorean triple $(\mathrm{a}, \mathrm{b}, \mathrm{c})$ st
b is even \& a and b are relatively prime; any pythagorean triple is obtainable from a unique primitive pythagorean triple by multiplication thruout by a positive integer and by possible interchange of the first two entries

GG42-13
every triple ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) st
$\mathrm{a}=\mathrm{m}^{2}-\mathrm{n}^{2}$
$\mathrm{b}=2 \mathrm{mn}$
$\mathrm{c}=\mathrm{m}^{2}+\mathrm{n}^{2}$
wh m and n are relatively prime positive integers of different parity and with $\mathrm{m}>\mathrm{n}$ is a primitive pythagorean triple; conversely every primitive pythagorean triple (a, b, c) is uniquely of this form

ㅁ the three-squares theorem of elementary number theory
a positive integer n is
the sum of the squares of three integers
if and only if
there are no nonnegative integers r and s such that
$\mathrm{n}=4^{\mathrm{r}}(8 \mathrm{~s}+7)$

GG42-15
\square three primes \& Goldbach

- in a letter written to Euler in 1742
the German-Russian mathematician
Christian Goldbach (1690-1764)
conjectured that
every integer greater than 5
is the sum of three primes;
Euler rephrased the conjecture equivalently as
every even integer greater than 2
is the sum of two primes
which is the form in which
Goldbach's Conjecture is now usually stated
- the Second/Other Goldbach Conjecture states that
every odd integer greater than 5
is the sum of three primes
- as of 2000
neither conjecture has been proved or disproved

GG42-16
\square the $3 n+1$ problem
start with any positive integer n ; if n is even, divide n by 2 ;
if n is odd, multiply n by 3 and add 1
which produces an even integer $3 n+1$;
repeat the process on the integer obtained
and continue in order to form a sequence;
prove or disprove the conjecture
that the resulting sequence
always reaches the number 1
(and then the sequence will cycle as 1, 4, 2, 1, etc); this problem is unsolved at the present time (May 2001);
the conjecture has been verified by actual calculation up to astronomical numbers

GG42-17
\square the three cube roots of unity

- 1
- $\omega=\frac{1}{2}(-1+\mathrm{i} \sqrt{3})$
- $\omega^{2}=\bar{\omega}=\frac{1}{2}(-1-\mathrm{i} \sqrt{3})$

GG42-18
three little formulas relating the three most important numbers in mathematics that are designated by letters:
$\pi, \mathrm{e}, \mathrm{i}$
$e^{\pi i}+1=0$
$\mathrm{i}^{\mathrm{i}}=\mathrm{e}^{-\frac{\pi}{2}} \quad(p \mathrm{v})$
$\sqrt[i]{i}=e^{\frac{\pi}{2}} \quad(p v)$
these three formulas are important enuf to be put in limerick form
'Ee to the pie eye plus won Goes poof' is a benison
For it wraps up a lot
In a very small spot
And proves math is always great fun.

Georgie Porgie said 'Hi!
The principal ith power of i
Is the number e to
Minus π over 2
But I cannot begin to tell why.'

Georgie Porgie said 'Hi!
The principal ith root of i
Is the number e to
Plus π over 2
But I cannot begin to tell why.'

GG42-20
\square the Q \& O multiplicative triplets
aka
quaternion \& octonion multiplications made easy

- the quaternion number system $\mathbb{\Re}$
is by definition \& a little proof
a 4-dimensional real normed conjugated
noncommutative associative
linear division algebra
with bilinear multiplication
\&
with three basic unit quaternions (besides unity)
i, j, k
whose products satisfy the condition:
the ordered triple ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) is a cyclic system
viz
$i^{2}=-1$
$j^{2}=-1$
$\mathrm{k}^{2}=-1$
$\mathrm{i} j=\mathrm{k} \& \mathrm{j} \mathrm{i}=-\mathrm{k}$
$j k=i \& k j=-i$
$\mathrm{ki}=\mathrm{j} \& \mathrm{ik}=-\mathrm{j}$
- the octonion number system ©
is by definition \& a little proof
an 8-dimensional real normed conjugated
noncommutative nonassociative
linear algebra
with bilinear multiplication
\&
with seven basic unit octonions (besides unity)
$\mathrm{e}_{\mathrm{n}}(\mathrm{n} \in \underline{7})$
such that
each of the following seven ordered triples is a cyclic system:
$\begin{array}{lll}e_{1} & e_{2} & e_{4}\end{array}$
$\begin{array}{lll}e_{1} & e_{3} & e_{7}\end{array}$
$\begin{array}{lll}e_{1} & e_{5} & e_{6}\end{array}$
$\begin{array}{lll}\mathrm{e}_{2} & \mathrm{e}_{3} & \mathrm{e}_{5}\end{array}$
$\begin{array}{lll}\mathrm{e}_{2} & \mathrm{e}_{6} & \mathrm{e}_{7}\end{array}$
$\begin{array}{lll}\mathrm{e}_{3} & \mathrm{e}_{4} & \mathrm{e}_{6}\end{array}$
$\begin{array}{lll}e_{4} & e_{5} & e_{7}\end{array}$
starting with any of the above triples
and repeatedly adding 1 to the subscripts mod 7
will yield all triples in the given cyclic order
GG42-22
a geometric mnemonic
for the above seven cyclic systems
is based on an equilateral triangle
as shown below;
the seven basic nonunity octonions
are distributed at
the three vertices,
the centroid,
the three side-midpoints
as indicated on the diagram;
there are seven 'lines'
viz
the three sides,
the three medians,
the curvilinear midpoint triangle;
think of the sides of the original triangle and the curvilinear midpoint triangle
as oriented positively= in the counterclockwise direction;
think of the three medians as directed
from vertex to centroid to opposite side-midpoint;
each pair of units lies on just one line
and this line contains just one other unit and thus
the diagram determines a unique cyclic order
of these three units;
the seven cyclic systems
may now be readily read off the diagram

GG42-23

GG42-24
\square the three sums-of-squares identities

- the sum-of-two-squares identity
= the two-squares identity
is derivable from
the multiplicative norm law
for complex numbers
viz
the norm of the product of two complex numbers equals
the product of the norms of the complex numbers
representing each of two complex numbers
as the canonical basic linear combination
of two real numbers
\&
substituting in
the multiplicative norm law
for complex numbers
gives
the two-squares identity
viz
for all real numbers a, b, c, d
$\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)\left(\mathrm{c}^{2}+\mathrm{d}^{2}\right)=(\mathrm{ac}-\mathrm{bd})^{2}+(\mathrm{ad}+\mathrm{bc})^{2}$
which shows inp that the set of all sums of squares of two integers is multiplicatively closed
$=$ the product of two or more sums of squares of two integers is again a sum of squares of two integers

GG42-26

- the sum-of-four-squares identity
= the four-squares identity
is derivable from
the multiplicative norm law
for quaternion numbers
viz
the norm of the product
of two quaternion numbers
equals
the product of the norms
of the quaternion numbers

GG42-27
representing each of two quaternion numbers
as the canonical basic linear combination
of four real numbers
\&
substituting in
the multiplicative norm law
for quaternion numbers
gives
the four-squares identity
viz
(in compressed form)
for all complex numbers a, b, c, d
$\left(|\mathrm{a}|^{2}+\mid \mathrm{b}^{2}\right)\left(|\mathrm{c}|^{2}+|\mathrm{d}|^{2}\right)=|\mathrm{ac}-\overline{\mathrm{b}} \mathrm{d}|^{2}+\overline{\mathrm{a}} \mathrm{d}+\left.\mathrm{bc}\right|^{2}$
which shows inp that
the set of all sums of squares of four integers
is multiplicatively closed
= the product of two or more sums of squares of four integers is again a sum of squares of four integers

GG42-28

- the sum-of-eight-squares identity
= the eight-squares identity
is derivable from
the multiplicative norm law
for octonion numbers
viz
the norm of the product
of two octonion numbers
equals
the product of the norms
of the octonion numbers

GG42-29
representing each of two octonion numbers
as the canonical basic linear combination
of eight real numbers
\&
substituting in
the multiplicative norm law
for octonion numbers
gives
the eight-squares identity
viz
(in compressed form)
for all quaternion numbers a, b, c, d

$$
\left(|\mathrm{a}|^{2}+|\mathrm{b}|^{2}\right)\left(|\mathrm{c}|^{2}+|\mathrm{d}|^{2}\right)=|\mathrm{ac}-\mathrm{d} \overline{\mathrm{~b}}|^{2}+|\overline{\mathrm{a}} \mathrm{~d}+\mathrm{cb}|^{2}
$$

which shows inp that
the set of all sums of squares of eight integers
is multiplicatively closed
$=$ the product of two or more sums of squares of eight integers is again a sum of squares of eight integers

GG42-30
\square terse triads

- a threefold classification of triangles: scalene, isosceles, equilateral
- a threefold classification of triangles: acute-angled = acute-angle = acute right-angled = right-angle $=$ right obtuse-angled = obtuse-angle $=$ obtuse
- the threefold classification of conic sections according to eccentricity e:
ellipses $\quad(e<1)$ [for circles $e=0$]
parabolas $\quad(e=1)$
hyperbolas (e>1)
- the three diagonals of a cyclic quadrilateral (rearrange the sides in the circumscribing circle)
- the three regular tesselations of the plane by: equilateral triangles, squares, hexagons
- the three classical construction problems of Greek geometry: trisect an angle, duplicate a cube, square a circle by Platonic tools alone

GG42-31

- names of the three coordinate axes of a rectangular coordinate system in 3-space: x-axis, y-axis, z-axis
- names of the three coordinates of a point
wrt a rectangular coordinate system in 3-space:
x -coordinate $=$ abscissa
y-coordinate $=$ ordinate
z-coordinate = altitude
- the determinant three-point form
of the equation of a plane in 3-space provided with a rectangular coordinate system is
a fourth order determinant placed equal to 0 where
the fourth column of the determinant
consists entirely of four 1's
and
the other entries in the four consecutive rows of the determinant
are occupied by
the coordinates of the running point and
the coordinates of the three given points

GG42-32

- the three direction angles, cosines, numbers of a line (possibly directed) in 3-space provided with a rectangular coordinate system
- the three-term direction ratio of a line (possibly directed) in 3-space provided with a rectangular coordinate system
- the three projection planes of a line in 3-space provided with a rectangular coordinate system
- the three axes of an ellipsoid: the major axis, the mean axis, the minor axis
- the three kinds of reflective symmetry in 3-space: central, axial, planar
- the scalar product of three 3 -vectors
$=$ the determinant of three 3 -vectors; the left/right vector product of three 3-vectors
- the three crossings
of a left-handed/right-handed trefoil knot which is the simplest of all knots
- the number system to the base 3
$=$ the base 3 number system
= the ternary number system
$=$ the 3 -ary number system
= the triadic number system
$=$ the 3 -adic number system
- the three ef number sequences:
the Fermat numbers
the Fibonacci numbers
the figurate numbers
- the threefold
sum-of-the-proper-divisors classification of positive integers as: abundant, perfect, deficient
- Gauss proved
when he was only nineteen year old that every positive integer
is the sum of at most three triangular numbers

GG42-34

- ¿are there infinitely many prime triplets?
where a prime triplet is such as $(3,5,7)$; answer unknown at present (2000); it is not known at present (2000) whether there are infinitely many twin primes where a twin prime pair is such as $(3,5)$
- the three signs of real numbers:
positive, zero, negative
- the threefold IFI
exclusive \& exhaustive classification of real numbers:
integers
fractions $=$ noninteger rational numbers
irrationals = irrational numbers
- the square root of 3
$\sqrt{3}=1.732+$
may be called
the George Washington number
because
George Washington was born in 1732

GG42-35

- the cubic equation of Wallis
$x^{3}-2 x-5=0$
has the unique real root

$$
x=2.094551 \cdots
$$

- the threefold classification
of critical $=$ stationary points $=$ sta pts
of a real function of one variable:
maximum point $=\max \mathrm{pt}$
inflection point $=$ flex pt
minimum point $=\min \mathrm{pt}$
- there are three infinities
associated with the real number line:
plus infinity, minus infinity, projective infinity; plus infinity and minus infinity come from the two-point compactification of the real line; projective infinity comes from the one-point compactification of the real line
- there are incomplete elliptic integrals of the first, second, and third kinds
- there are Bessel functions of the first, second, and third kinds
- the three boundary value problems
(first = Dirichlet, second = Neumann, third) for harmonic functions
- the general third degree polynomial equation in one variable over the complex field is solvable by radicals using the coefficients
- the three types of isolated singularities of a complex analytic function:
removable singularity, pole, essential singularity
- Hadamard's three-circle theorem in complex analysis
- the three fundamental forms (first, second, third) of a hypersurface in euclidean n-space
- in differential geometry and tensor analysis appear the Christoffel three-index symbols of the first and second kind
- in the theory of obstructions there are three (first, second, third) classification theorems, extension theorems, homotopy theorems, and there are three (primary, secondary, tertiary) obstructions

GG42-37

- the three defining properties of an equivalence relation: reflexive, symmetric, transitive
(mnemonic: rst, three consecutive letters of the alphabet)
- the three defining properties of a partial order: reflexive, antisymmetric, transitive
- the trichotomy law for linearly/totally ordered sets = losets = tosets: exactly one of these statements holds: $\mathrm{x}<\mathrm{y}$ or $\mathrm{x}=\mathrm{y}$ or $\mathrm{x}>\mathrm{y}$
- the three basic binary operations in a ring: addition, subtraction, multiplication
- the three isomorphism theorems (first, second, third) for topological groups
- the threefold classification of cardinality: finite
countably infinite = denumerable uncountably infinite = uncountable
- the law of the excluded middle:
tertium non datur (Latin)
= lit: the third (case) is not given
= a proposition is true or false
= p or not p
$=p \vee \neg p$
- the threefold
validity classification
of statements as:
valid, nonsatisfiable, contingent
- the threefold provability classification of statements as: provable, disprovable, undecidable
- three notable theorems of Gödel are
(1) Gödel's Completeness Theorem.

The lower predicate calculus (= first-order logic) is complete. (2) Gödel's First Incompleteness/Undecidability Theorem.

Any consistent formal system rich enuf to contain arithmetic contains undecidable propositions.
(3) Gödel's Second Incompleteness/Undecidability Theorem.

In any consistent formal system rich enuf to contain arithmetic the proposition that the system is consistent is undecidable.

GG42-39

- there is a three-valued logic among n-valued logics (which has been used in an attempt to explain quantum mechanics)
- the three-body problem of celestial mechanics; unsolved at present (2000)
- the restricted three-body problem of celestial mechanics; much known about this special case
- the $3 \times$ problem where

X = container, gallon, glass, jar, jug, etc

GG42-40

- the power with base x and exponent three
$=$ the power with base x and exponent 3
$=$ the third power of x
$=$ the 3rd power of x
$=$ the 3rd pow of x
$=x$ to the third power
$=x$ to the 3rd power
$=x$ to the 3rd pow
$=x$ to the third
$=x$ to the 3rd
$=x$ to the power three
$=x$ to the power 3
$=x$ to the pow 3
$=$ the cube of x
= x cubed
$=x$ cube
$=x^{3}$

GG42-41

- the power with base x and exponent one-third
$=$ the power with base x and exponent $1 / 3$
$=$ the one-third power of x
$=$ the $1 / 3$ power of x
$=$ the $1 / 3$ pow of x
$=x$ to the one-third power
$=x$ to the $1 / 3$ power
$=x$ to the $1 / 3$ pow
$=x$ to the one-third
$=x$ to the $1 / 3$
$=x$ to the power one-third
$=x$ to the power $1 / 3$
$=x$ to the pow $1 / 3$
$=$ the cube root of x
$=\sqrt[3]{\mathrm{x}}$
- an X of degree three
$=$ an X of degree 3
$=$ an X of deg 3
$=a$ third degree X
= a 3rd degree X
= a 3rd deg X
= a cubic X
where
X = equation, form, polynomial, differential equation, etc
- an X of dimension three
$=$ an X of dimension 3
$=$ an X of dim 3
= a three-dimensional X
= a 3-dimensional X
= a 3-dim X
= a 3-D X
= a $3-\mathrm{X}$ (sometimes)
where
X = topological space, vector space, manifold, geometric object, geometry, etc
- an X of index three
$=$ an X of index 3
where
X = almost anything, notationally an adscript

GG42-43

- an X of order three
$=$ an X of order 3
$=$ an X of ord 3
= a third order X
= a 3rd order X
= a 3rd ord X
= a three-by-three X
= a 3 by 3 X
$=\mathrm{a} 3 \times 3 \mathrm{X}$
where
$X=$ matrix, determinant, magic square, etc
- an X of order three
= an X of order 3
$=$ an X of ord 3
$=\mathrm{a}$ third order X
= a 3rd order X
= a 3rd ord X
where
X = form, derivative, differential equation, etc

GG42-44

- an X of rank three
= an X of rank 3
$=$ an X of rnk 3
where
X = form, determinant, group, Lie algebra, Lie group, map, matrix, tensor, etc
- an X of rank three
= an X of rank 3
= an X of rnk 3
$=a$ third $\operatorname{rank}(e d) X$
= a 3rd rank(ed) X
= a 3rd rnk X
where
X = datum, process, statistical result, etc
- the three parts of
the Tree of Mathematics:
roots = axioms
trunk = proofs
leaves $=$ theorems
- the three big ems of statistics:
mean, median, mode
- the three material constituents of an atom: protons, neutrons, electrons
- the three great frontiers of science:
the very big
the very small
the very complex
- it is likely that a coherent triplet
is easier to understand and remember than three disparate singlets

GG42-46
\square a triangle has many triplets
altitudesaltitude-feetangles = interior/internal angles
angle bisectors = interior/internal angle bisectors
exterior/external angles
exterior/external angle bisectors
excircles
excenters
exradii
medians
symmedians
pedal points of a point
sides
side-lenghts
side-midpoints
side-perpendicular-bisectors
vertices
etc
GG42-47
\square a terrific triplet of theorems on triangles

- the nine-point circle theorem: for any triangle the following three triples of notable points all lie on a circle
called the nine-point circle:
the midpoints of the three sides,
the feet of the three altitudes, the midpoints of the three vertex-to-orthocenter segments
- Feuerbach's theorem (1822):
for any triangle
the nine-point circle
is tangent to
the inscribed circle internally
\&
the three exscribed circles externally
- bioline

Karl Wilhelm Feuerbach
1800-1834
German
geometer

GG42-48

- Morley's theorem (ca 1899):
for any triangle
the three pairs of adjacent internal angle trisectors intersect in the vertices of an equilateral triangle
- bioline

Frank Morley
1860-1937
English-American
algebraist, geometer;
the American writer
Christopher Morley (1890-1957)
was his son

GG42-49
\square three identities for the three angles of a triangle

- $\sin \mathrm{A}+\sin \mathrm{B}+\sin \mathrm{C}=4 \cos \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~B}}{2} \cos \frac{\mathrm{C}}{2}$
- $\cos \mathrm{A}+\cos \mathrm{B}+\cos \mathrm{C}=1+4 \sin \frac{\mathrm{~A}}{2} \sin \frac{\mathrm{~B}}{2} \sin \frac{\mathrm{C}}{2}$
- $\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}=\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}$
\square the three-point surveying problem
given three collinear points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with known distances between them and given a point S with known angles ASB and BSC, to find the distance SB;
this is also the problem of finding the distance
from a ship S at sea to the reference point B on shore;
or more generally
to find the point from which
pairs of three given points
are seen under given angles;
or equivalently
to find the point from which
the sides of a given triangle
are seen under given angles

GG42-51
\square the two triangles of three dots
Δ the up triangle of three dots \therefore means therefore, hence
Δ the down triangle of three dots \because means since, because
$\Delta \therefore \& \because$ are kinds of converses of each other because

- \therefore is analogous / related to \Rightarrow
- \because is analogous / related to \Leftarrow
$\bullet \mathrm{p} \therefore \mathrm{q} \Leftrightarrow \mathrm{q} \because \mathrm{p}$

GG42-52

ㅁ the three solids of Cézanne:
the cylinder, the sphere, the cone
in 1904 the French Postimpressionist painter
Paul Cézanne (1839-1906) said
'Nature must be treated in terms of the cylinder, the sphere, and the cone.'
with his own painting and this statement
he became the forerunner
of Cubism (ca1907-ca1915)
which was the most influential
of all modern art movements
and out of which grew
most of the earlier forms of abstract art

GG42-53
\square the three Frenet-Serret formulas are
the central formulas in the theory of space curves

$$
\begin{aligned}
& \frac{\mathrm{dt}}{\mathrm{ds}}=\quad \kappa \mathbf{n} \quad=\mathbf{d} \times \mathbf{t} \\
& \frac{\mathrm{d} \mathbf{n}}{\mathrm{ds}}=-\kappa \mathbf{t} \quad+\tau \mathbf{b}=\mathbf{d} \times \mathbf{n} \\
& \frac{\mathrm{d} \mathbf{b}}{\mathrm{ds}}=\quad-\tau \mathbf{n} \quad=\mathbf{d} \times \mathbf{b}
\end{aligned}
$$

wh
$\mathrm{s}=$ arclength
$\kappa=$ curvature
$\tau=$ torsion
$\mathbf{t}=$ unit tangent vector
$\mathbf{n}=$ unit principal normal vector
b $=$ unit binormal vector
$\mathbf{d}=$ the Darboux rotation vector $=\tau \mathbf{t}+\kappa \mathbf{b}$

GG42-54
bioline
Jean Frédéric Frenet
1816-1900
French
differential geometer, astronomer
bioline
Joseph Alfred Serret
1819-1885
French
analyst, differential geometer, number theorist, astronomer

GG42-55
\square the three greatest mathematicians of all time in chronological order

- Archimedes
ca 287-212 BCE
Greek
- Newton

1642-1727
English

- Gauss

1777-1855
German
their full names

- Archimedes of Syracuse
- Isaac Newton
- Carl Friedrich Gauss

GG42-56
\square the three greatest geometers of antiquity were all Greek

- Euclid of Alexandria
fl ca 300 BCE
- Archimedes of Syracuse
ca 287-212 BCE
- Apollonius of Perga
ca 255 - ca 170 BCE
this listing is in chronological order

GG42-57
\square the three most prolific mathematicians of all time in decreasing quantitative order

- Euler

1707-1783
Swiss, lived in Germany \& Russia

- Cauchy

1789-1857
French

- Cayley

1821-1895
English
their full names

- Leonhard Euler
- Augustin-Louis Cauchy
- Arthur Cayley
\square the three ancient A's were all Greek
- Aristotle of Stagira 384-322 BCE
philosopher \& scientist; one of the most important \& influential figures in Western civilization
- Archimedes of Syracuse
ca 287-212 BCE
mathematician \& physicist; one of the three greatest mathematicians of all time
- Apollonius of Perga
fl 250-220 BCE
mathematician; called 'The Great Geometer'

GG42-59
\square the three L's
in the history of mathematics

Lagrange
Laplace
Legendre

1736-1813
1749-1827

1752-1833
were the principal French analysts
at the time of
the French Revolution 1789-1795
\&
the Napoleonic Era
1796-1815

GG42-60
\square the simplest 3 by 3 magic square

- the Lo-shu
is
the following 3×3 magic square

GG42-61

- the Lo-shu is the simplest of all magic squares; its entries are the first nine positive integers and it is essentially unique (except for reflections)
- the Lo-shu
has
magic constant
$=15$
= the sum of each of the three rows
= the sum of each of the three columns
$=$ the sum of each of the two diagonals
- there are many patterns to be found in the Lo-shu; here are some of them
- the least number 1 is the center entry of the bottom row; the greatest number 9 is the center entry of the top row
- the middle entry 5
$=$ the middle number between $1 \& 9$
$=$ the arithmetic mean of $1 \& 9$
- the isosceles triangle 1-2-3
(base at 1-3 \& opp vertex at 2)
= the arrowhead 1-2-3 (tip at 2)
is formed by
the first triple of numbers between $1 \& 9$ and points to the north-east
- the isosceles triangle 7-8-9
(base at 7-9 \& opp vertex at 8)
$=$ the arrowhead 7-8-9 (tip at 8)
is formed by
the last triple of numbers between $1 \& 9$ and points to the south-west
- the principal diagonal 4-5-6
$=$ the middle triple of numbers between $1 \& 9$
- the odd number entries form a cross in the middle
- the even number entries are at the four corners
- z-shaped patterns are formed
by the consecutive odd number entries 1-3-5-7-9
\&
by the consecutive even number entries 2-4-6-8
- the Lo-shu
is the oldest known example of a magic square;
the Lo-shu
may be called
the Chinese turtle magic square
because
Chinese mythology alleges that the Lo-shu was first seen by the great Emperor Yu around 2200 BCE
as a decoration on the back of a divine turtle appearing on the bank of the Yellow River (= Lo in Chinese) when he was embarking onto the river
- the Lo-shu \& the associated legend
are found in the l-Ching
= pr ee-king
which is an ancient Chinese book on divination
\& which contains systematic permutations;
the book was probably written about 1130 BCE

GG42-64
\square the three big C's of general topology are the three topological properties
which are listed below in the form

- adjective noun
- continuous continuity
- compact compactness
- connected connectedness
where
- continuous
= preserves nearness
which refers to a function
from a topological space to a topological space
- compact
$=$ the topological generalization of finite which refers to a topological space
- connected
$=$ the precise topological description of being in one piece which refers to a topological space
\square three classes of sets that are not sets
- the class of all sets
$=$ the class of sets
$=$ the set class
$=$ Set
- the class of all ordinals
= the class of ordinals
$=$ the ordinal class
= Ord
- the class of all cardinals
= the class of cardinals
= the cardinal class
$=$ Crd
- Set ... Ord ... Crd, none of which are sets
- instead of saying
set $_{0}$, set $_{1}$, set $_{2}, \cdots$,
say
set, class, collection, ... ;
everything is still a 'set';
the distinction among
'set', 'class', 'collection', ...
is just a notational/terminological device
for the sake of clarity \& simplicity
note: ordinal = ordinal number \& cardinal = cardinal number GG42-66
\square a three category classification
in which
one class appears to be
somewhat special
\&
serving to separate the other two classes
often receives the designations
- of elliptic type
- of parabolic type
- of hyperbolic type
(the three classes usually have nothing to do
with conic sections themselves)
because of
the prototype classification
of conic sections
viz
- ellipses
have eccentricity e<1
- parabolas
have eccentricity e = 1
- hyperbolas
have eccentricity e>1
examples of this kind of classification include
- geometries
- points on a surface
- surfaces of revolution of constant curvature
- simply connected Riemann surfaces
- 2nd order PDE's
\square the three little words constant/variable/parameter
¿ what's the difference ?
for a given mathematical discourse:
- a constant
= a symbol with a single value assigned
- a variable
= a symbol with a set of values assigned, this set being called the range of the variable
- a parameter
= a symbol which is
sometimes considered to be a constant
\&
sometimes considered to be a variable
- the value of a constant
= the unique object that it is assumed the constant stands for
- a value of a variable
$=$ an element of the range of the variable, the range being the set of all objects that it is assumed the variable may stand for
\square the three -jection words for functions
- injection/injective = one-to-one
- surjection/surjective = onto
- bijection/bijective = one-to-one onto
other -jection words in the English language include
dejection
ejection
interjection
introjection
objection
projection
rejection
subjection

GG42-69
\square names of unit vectors

2-dim unit vectors

- $\mathbf{i}=(1,0)=$ Little Isaac
- $\mathbf{j}=(0,1)=$ Little Jacob

3-dim unit vectors

- $\mathbf{i}=(1,0,0)=$ Isaac
- $\mathbf{j}=(0,1,0)=$ Jacob
- $\mathbf{k}=(0,0,1)=$ Kilroy
n -dim unit vectors wh $\mathrm{n} \in$ pos int
- $\mathbf{e}_{1}=(1,0,0, \cdots, 0,0)=$ First Elf
- $\mathbf{e}_{2}=(0,1,0, \cdots, 0,0)=$ Second Elf
!
$\cdot \mathbf{e}_{\mathrm{n}}=(0,0,0, \cdots, 0,1)=$ nth Elf
the letter e comes from the German word die Einheit = unit/unity

GG42-70
\square the three old -chrones

- brachistochrone
- isochrone
- tautochrone
brief descriptions
- brachistochrone
= curve of shortest descent
= cycloid
- isochrone
= curve of equal descent
= cycloid
- tautochrone
can mean
isochrone
or something else
- -chrone (= time)
\neq-chrome (= color)

GG42-71

a lesson in Greek \& in etymology

Greek
 - $\beta \rho \alpha \chi \cup \varsigma$

-100s

- $\tau 0 \alpha v \tau 0$
pronoun
- χ роvos
noun
- $\chi \rho \omega \mu \alpha$
noun
color
\square the three most overused words in mathematics
generally mathematicians
are not known to be
creative and ingenious
when it comes to thinking up
an apt previously unused word
to name a just-defined object/property/method/whatever;
it is often the case that they select
some word that has been used
many times in other contexts;
it is likely that
the three most overused words in mathematics
are the three given below;
each word is overused in the sense that
each has many different meanings
dependent on the context
- conjugate
- normal
- regular
it is frequently the case that
a mathematician will choose a nice word suggesting this is the way things should be for the situation they can handle or are interested in and choose the opposite sort of word for the opposite situation;
hence
eg
the nice words:
normal
regular
simple
smooth
stable
standard
tame
the no-so-nice words:
chaotic
pathological
rough
singular
sporadic
turbulent
unstable
wild

GG42-74
\square three grams/graphs/signs

- ideogram
= ideograph
= idea-sign
= a sign by which an idea is written
- logogram
= logograph
= word-sign
= a sign by which a word is written
- syllogram
= syllograph
= syllable-sign
= a sign by which a syllable is written

GG42-75
\square three -ati words

- digerati = computerly people
- illuminati = enlightened people
- literati = scholarly people
also
- intelligentsia = intellectual people
\square three good foreign words adopted into English; each is extraordinaire (French) = extraordinary
- aficionado/a (Spanish)
= pr ah-FEES-ee-oh-NAH-doh/dah
= a male/female person
who appreciates/knows/likes
an avidly pursued activity/interest
- cognoscente/i (Italian)
= pr kahn-yuh-SHEN-tuh/tee
= person/persons who is/are
especially knowledgeable in a subject
- connoisseur (French)
= pr KAH-nuh-SURR (English)
= an expert in a subject who enjoys it with a discriminating taste \& an appreciation of subtleties
\square three types of languages
- SVO language
= a language that has the basic
subject-verb-object order
in a sentence
eg English, Spanish, Chinese
- SOV language
= a language that has the basic subject-object-verb order
in a sentence
eg Turkish, Japanese, Tamil
- VSO language
= a language that has the basic
verb-subject-object order
in a sentence
eg Welsh, classical Arabic, Tagalog

GG42-78
\square three good words for each language X

- Xphile
$=$ one who loves the X language and X things
- Xphobe
$=$ one who hates the X language and X things
- Xphone
= one who speaks the X language
where possibly $\mathrm{X}=$ math

GG42-79

ㅁ Kepler's three laws of planetary motion

- Law 1. The orbit of each planet is an ellipse with the sun at one of its foci.
- Law 2. A line connecting any planet with the sun sweeps over equal areas in equal time during orbital motion.
More briefly, the areal speed of each planet is constant.
- Law 3. The square of the period of revolution of any planet is proportional to
the cube of the major axis of the planet's elliptical orbit, the constant of proportionality being the same for all planets.
bioline
Johannes Kepler
1571-1630
German
astronomer, mathematician, philosopher

GG42-80
\square Newton's three laws of motion

- Law 1. Every object remains at rest or moves with constant speed in a straight line unless acted upon by an external force.
- Law 2. For an object in motion force equals mass times acceleration.
More fully,
the vector force
equals
the time rate of change of the vector momentum.
- Law 3. If one object exerts a force on a second object, then the second object exerts a force on the first object that is equal in magnitude and opposite in direction. More briefly,
to every action there is an equal and opposite reaction.
bioline
Isaac Newton
1642-1727
English
mathematician, physicist;
one of the three greatest mathematicians of all time, the other two being Archimedes and Gauss

GG42-81
\square the three laws of thermodynamics
which are
restated in
the language of the theory of games
\&
applied to
the game of life

Law 1. You can't win.

Law 2. You can't break even.
Law 3. You can't get out of playing the game.

GG42-82

- thermodynamics is the branch of physics that studies heat
- first law of thermodynamics
= the law of conservation of energy
= energy can neither be created nor destroyed but only converted from one form into another form
- second law of thermondynamcs
= entropy increases
= heat can flow only from a warmer body to a cooler body
- third law of thermodynamics
= every system has a finite positive entropy at a temperature above absolute zero but its entropy may become zero at a temperature of absolute zero
- entropy
= in a closed system the measure of the unavailability of the thermal energy to do mechanical work = measure of the degree of disorder of any system
\square the three ways of doing modern science
(1) theory
(2) experimentation \& observation
(3) computer simulation/graphics
in the past
mathematics
was virtually confined to (1)
but now
mathematics
can substantially participate in (3)

GG42-84
\square the three-fold spherical shell structure of the earth
Δ the crust of cool hard rock
Δ the mantle of hot plastic rock
Δ the core of hot iron

- the outer core of hot liquid iron
- the inner core of hot solid iron
in brief
Δ crust
Δ mantle
Δ core
- outer core
- inner core

GG42-85
\square three-tier tidbits to teachers
Δ the three I's of instruction
the task of the teacher
is to provide
the three I's of instruction viz

- information
- insight
- inspiration
a teacher
= a purveyor of the three I's
= a person with three eyes
= a three-eyed person
Δ the three I's of discovery/invention
the three steps to discovery/invention as described by Helmholtz are
the three I's of discovery/invention viz
- immersion
- incubation
- illumination

GG42-86
Δ three educational desiderata:

- literacy = to be literate
- numeracy = to be numerate
- computeracy $=$ to be computerate
Δ the three schoolhouse R's:
- Reading
- wRiting
- aRithmetic
or more alliteratively
- readin'
- 'ritin'
- 'rithmetic
which are the three principal subjects traditionally taught in elementary school

GG42-87
Δ advice to teachers:
you can teach technique but
you can't teach talent
since
technique is environmental
\&
talent is genetic
Δ bioline
Hermann Ludwig Ferdinand von Helmholtz 1821-1894
German physicist, physiologist, applied mathematician

GG42-88
\square the three slices of the math pie

- mathematics may be divided up initially into three principal branches
viz
algebra
analysis
geometry/topology
- if mathematics is thought of as represented by a circular disk and
if the three principal branches of mathematics are thought of as three equal circular sectors then
the three bounding radii and the center are wide and full of content
ie
much mathematics is a mixture of some two of these branches and
much mathematics is a mixture of all three of these branches

GG42-89

- algebra may be defined as the study of finitary operations and relations
- analysis may be defined as the study of the limit properties
of numbers and functions of numbers
- topology may be defined as the study of the general notion of limit
- to a mathematician these three brief descriptions present a clear operationally feasible method for classifying any given piece of mathematics as algebra or analysis or topology or some mixture of these
- the situation with respect to geometry is not so simple;
in fact no such simple prescription of what geometry is has ever been recognized;
for a detailed discussion of this fact and why geometry and topology together should be considered as constituting
a single principal branch of mathematics rather than two or more principal branches, see packet \#17 What Is Geometry?

GG42-90
\square words meaning three, abstractly or concretely, or pertaining thereto
and of mathematical use
clover
cubature
cube
cubic
cubical
cubiform
cuboctahedron
cuboid
delta
deltahedron
delta-shaped
deltoid
deltoidal
fan-shaped
n -thirds wh $\mathrm{n}=$ a positive integer
one-third
rhombicuboctahedron
ternary
ternion

GG42-91
third
thirdly
three
three-angled
three-cornered
three-dimensional
threefold
three-forked
three-nths wh $\mathrm{n}=$ a positive integer
three-part
three-phase
three-ply
three-pronged
three-quarter
threescore
three-sided
three-valued
three- X wh $\mathrm{X}=$ a noun or an adjective

GG42-92
trefoil
triacontahedron
triad
triadic
triality
triangle
triangulable
triangular
triangulate
trianglulation
triaxial
triclinic
trichotomize
trichotomous
trichotomy
tricornered
trident
trifold
trifolium
trifurcate
trifurcation
trigon
trigonal
trigonometric
trigonometry
trigram
trigraph
trihedral
trihedron
trilateral
trilemma
trilinear
triliteral
trilogic
trilogical
trinomial
trinormal
trionym
tripartite
tripartition
triple
triplet
triplex
triplicate
triplication
triplicity
triply
tripod
trirectangular
trisect
trisected
trisecting
trisection
trisector
trisectrix
trisoctahedron
trisyllable
trivium
two-thirds
GG42-94
also in context:
tertium non datur (Latin)
= lit: third not given
= law of the excluded middle
cubical parabola
semicubical parabola
three-body problem
three R's
3-D

GG42-95
\square What I tell you three times is true.
the above line is a quotation from
Lewis Carroll's poem
Hunting of the Snark
bioline
Lewis Carroll
was the pseudonym of
Charles Lutwidge Dodgson
1832-1898
English
writer of children's stories,
Oxford University mathematics don, photographer

Charles is an English and French name of Germanic origin; Charles is used an an anglicized form of the Irish Gaelic name Cearbhall;
Carroll is also an anglicized form of Cearbhall;
Lewis is a more anglicized form
of the English name Lutwidge of Germanic origin

GG42-96
\square three mathematical cornerstones

- the cornerstone of geometry
= Euclid's book
'Elements' ca 300 BCE in Greek
- the cornerstone of algebra
= al-Khwarizmi's book
'Algebra' ca 800 CE in Arabic
- the cornerstone of analysis
= Euler's book
'Introduction' 1748 CE in Latin

GG42-97
\square the three principal principles/procedures of mathematics

- make definitions
- prove theorems
- construct examples
more briefly
- define
- prove
- exemplify

GG42-98

\square human duality in three languages

English
body
corpus
\&
mens / animus vovৎ/ $\psi \cup \kappa \eta$
(nous / psyche)
\square the occurrences in nonmath contexts of ideas and words alluding to three are beyond easy counting and listing
here is a more or less random sampling containing something over 50 items with brief explanations/identifications

- tercentenary
= tercentennial
= tricentennial
= adjective or noun
for a 300th anniversary or its celebration
- tercet
= triplet
= a stanza of poetry consisting of three equal-length lines often rhyming together
- ternate
= describing a compound leaf as
divided into three equal parts
- tertian
= recurring every other day
= every third day inclusive
- tertiary
= third in degree/importance/order/place
- tertium quid (Latin)
$=$ lit: third something
= something that serves as a compromise between two oppositie things;
sometimes in philosophy
something neither mind nor matter
GG42-101
- the traditional three ages of prehistory
= Stone Age, Bronze Age, Iron Age;
a more modern classification runs
Old Stone Age = Paleolithic
Middle Stone Age = Mesolithic
New Stone Age = Neolithic
Copper Age = Chalcolithic
Bronze Age
Iron Age
- the three degrees of comparison of adjectives and adverbs: positive, comparative, superlative
- three-dog night
= a very cold night
as measured by the number of dogs
one has to have in the bed
in order to keep warm

GG42-102

- the three Fates of Greek mythology
= three old women, daughters of Nyx $=$ Night, who
spin (Clotho), measure (Lachesis), cut (Atropos) the thread of life
- the three Furies of Greek mythology
= Alecto, Megaera, Tisiphone
- the three Graces of Greek mythology
= Aglaia (Brilliance), Euphrosyne (Joy), Thalia (Bloom)
- the three Horae (Latin for 'hours') of Greek mythology
= Dike (Justice), Eunomia (Order), Irene (Peace)
- the three Sirens of Greek mythology
= Leucosia, Ligea, Parthenope
- the three goddesses of Greek mythology from whom Paris had to choose the most beautiful
= Athena, Aphrodite, Hera
- the three kingdoms of nature
= animal, vegetable, mineral
- The Three Musketeers
= Athos, Porthos, Aramis
from the historical novel (1844)
of the same name
Les Trois Mousquetaires (French)
by the French writer Alexandre Dumas père
(d'Artagnan was the fourth musketeer)
- The Threepenny Opera
= Die Dreigroschenoper (German)
= ballad-opera (1928, tr 1933)
by the German writer Bertolt Brecht
with music by the German-American composer Kurt Weill (based on John Gay's The Beggar's Opera)
- the three primary colors
$=$
red, green, blue (additive primaries, for light) or
cyan, magenta, yellow (subtractive primaries, for pigments/photography/printing)
- The Three Princes of Serendip
= Persian fairy tale which suggested (1754)
the word serendipity
to the English writer Horace Walpole
(Serendip = old Arabic name of Sri Lanka)
- three-ring circus
= a circus with three rings in which there are simultaneous performances and thus by extension
an extravagant display
- three score years and ten
= biblical (KJV) phrase for the expected length of human life
- the three ships of Christopher Columbus
on his first voyage to America in 1492
= Niña, Pinta, Santa Maria

GG42-105

- the three Brontë sisters
= Anne
(1820-1849)
Charlotte (1816-1855)

Emily
(1818-1848)
who hold a remarkable place in English literary history

- The Three Sisters
= a play (1901) by the Russian writer Anton Chekhov
- the Three Sisters
= three adjacent mountain peaks in western Oregon, all over 10,000 feet high
- the three Weird Sisters
= the three witches
in Shakespeare's play Macbeth (ca 1606)
- thrice
$=$ three times
- trefoil
= three-leaved plant or ornament
- trialogue
= colloquy among three people
- Triangulum
= a small constellation in the northern hemisphere (Latin for triangle)
- Triangulum Australe
= a small constellation in the southern hemisphere (Latin for southern triangle)
- trianthous
= having three flowers
- triarchy
= government by three persons
- triathlon
= athletic contest with three events
- tricolor
= a national flag of three broad stripes of different colors
- tricorne
= a three-cornered hat
with the brim turned up
on all three sides

GG42-107

- trident
= in classical mythology
the three-pronged spear that
the Greek Poseidon = the Roman Neptune, god of the sea, carried as the symbol of his authority
- trifecta
= a bet on a horse race
in which the bettor must predict
the first three finishers in exact order
- the Trifid Nebula
= a bright nebula in Orion
(trifid is from the Latin word trifidus = split in three \& nebula is a Latin word meaning cloud/fog/mist)
- trifold
= threefold
- triform
= having three bodies/parts/shapes
- trilogy
= a sequence of three literary/musical
self-contained works relating to a common theme

GG42-108

- triphthong
= vowel sound with three elements in one syllable
- Triple Crown
= victory in all three horseracing events Kentucky Derby, Preakness Stakes, Belmont Stakes in the same season
- tripos
= a Cambridge University term meaning the three honor classes into which
bachelor degree candidates
were grouped after the final examination
in various subjects including mathematics;
so-called because
the oral examiner in the School of Philosophy
used to sit on a tripus (Latin) = three-legged stool and was called 'Mister Tripos'
- triptych
$=$
work of art in three connected pieces
or
three connected writing tablets used in ancient times (from a Greek word meaning threefold)

GG42-109

- triskaidekaphobia
= morbid fear of the number 13
(from Greek meaning three-and-ten-fear)
- triskelion
= symbol in the form of three bent lines/limbs
radiating from a common center (from a Greek word meaning three-legged)
- Hermes Trismegistus (Greek word)
= Hermes thrice greatest (meaning three times greater than the Greek god Hermes)
= an Egyptian priest
or Thoth, the Egyptian god of wisdom, who was fabled to have dictated
forty-two books dealing with the life and thought of ancient Egypt

GG42-110

Hermes
in ancient Greek mythology
was
the son of Zeus \& Maia;
he was the god of
commerce, eloquence, invention, roads, travel, and theft;
he was the herald/messenger of the gods, and
the bearer of the symbolic staff of the herald
which is called the 'caduceus'
(from the Greek word $\kappa \alpha \rho v \xi$ meaning 'herald')
and which consists of a staff
with two entwined serpents
and two wings on top;
the caduceus is now the modern physician's ensignia;
Hermes was identified with Mercury by the Romans

- tritone
= musical interval consisting of three whole tones
- triumvirate
= a group of three people who act jointly
for some special, usually governmental, purpose;
in ancient Roman history
The First Triumvirate
= Julius Caesar, Pompey, Crassus in 60 BCE
\&
The Second Triumvirate
= Octavius (later Caesar Augustus), Antony, Lepidus
- trivalent
= having a chemical valence of three
- troika
= a Russian word meaning
a team of three horses abreast with or without a drawn vehicle and by extension a set of three
- the eternal triangle
= amorous involvement of three people
- Twenty-three skiddoo!
= slang exclamation of variable meaning highly popular ca 1900-1910
- the number three occurs many times in nursery rhymes/songs/stories
eg
Goldilocks and the three bears
I saw three ships come sailing by
the three little kittens
the three little pigs
three men in a tub
etc

GG42-112
\square the three binomial formulas/theorems

- the binomial formula/theorem for ordinary powers
$(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$
- the binomial formula/theorem for rising factorial powers
$(a+b)^{\bar{n}}=\sum_{r=0}^{n}\binom{n}{r} a^{\bar{n}-r} b^{\bar{r}}$
- the binomial formula/theorem for falling factorial powers

$$
(\mathrm{a}+\mathrm{b})^{\underline{\mathrm{n}}}=\sum_{\mathrm{r}=0}^{\mathrm{n}}\binom{\mathrm{n}}{\mathrm{r}} \mathrm{a}^{\underline{\mathrm{n}-\mathrm{r}}} \mathrm{~b}^{\underline{\mathrm{r}}}
$$

wh
$\mathrm{a}, \mathrm{b} \in$ complex nr
\&
$\mathrm{n} \in$ nonneg int

