Orientation

#37 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2001

GG37-1 (10)

© 2001 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG37-2

\Box orientation

D. files

let

• $n \in pos int$

then

- an n file
- $=_{df}$ an ordered n tuple of n distinct objects

D. point files

let

- $X \in set$
- $n \in pos int$

then

• a point n - file of X

 $=_{df}$ an ordered n - tuple

of n distinct points = elements of X

D. arrow files

let

• m, $n \in pos int$

then

• an arrow m - file of \mathbb{R}^n

 $=_{df}$ an ordered m - tuple

of m distinct arrows of \mathbb{R}^n

with a common initial point

wh

an arrow $=_{df}$ a plural directed line segment

D. determinants of files

let

- $n \in pos int$

then

- the bordered determinant of σ
- $=_{df}$ the (n + 1)st order determinant
- whose rows are formed by taking consecutively
- the coordinates of the points of σ
- prefixed by the number 1
- the arrow determinant of σ =_{df} the nth order determinant whose rows are formed by taking consecutively the coordinates of the points P₁, P₂,..., P_n minus the coordinates of P₀
- the values of the above two determinants are equal

D. oriented files let • $n \in \text{pos int}$ • $\sigma = (P_0, P_1, \dots, P_n) \in \text{point } (n+1) - \text{file of } \mathbb{R}^n$ • $\tau = (\overrightarrow{P_0P_1}, \overrightarrow{P_0P_2}, \dots, \overrightarrow{P_0P_n}) = \text{the arrow } n - \text{file of } \mathbb{R}^n$ induced by σ

then

• σ

```
=_{df} positively oriented
```

or

negatively oriented

or

unoriented

according as the bordered determinant of σ is

positive

or

negative

or

zero

•τ

=_{df} positively oriented

or

negatively oriented

or

unoriented

according as the arrow determinant of σ is

positive

or

negative

or

zero

• σ and τ are compatibly oriented D. signed orientations

let

• $n \in pos int$

then

• the positive / negative orientation of \mathbb{R}^n

 $=_{df}$ the set of all

positively / negatively oriented point (n + 1) - files of \mathbb{R}^n or what is essentially equivalent

the set of all

positively / negatively oriented arrow n - files of \mathbb{R}^n

R. notions of orientation for euclidean spaces

since any euclidean space of whatever dimension,
such as line, plane, 3-space, etc,
can be equipped with a rectangular coordinate system
and thus be identified with Rⁿ for some positive integer n,
these spaces have the notions of orientation
automatically defined for them