The Ackermann Number Explosion

 \#36 of Gottschalk's GestaltsA Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG36-1 (18)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited
\square the Ackermann number explosion

- Ackermann's function
of two independent nonnegative integer variables and which is positive-integer-valued
is here presented equivalently (and I think more clearly)
as a sequence of positive-integer-valued functions of a single nonnegative integer variable

$$
\mathrm{f}_{0}(\mathrm{x}), \mathrm{f}_{1}(\mathrm{x}), \mathrm{f}_{2}(\mathrm{x}), \cdots \quad(\mathrm{x} \in \text { nonneg int var })
$$

Ackermann's sequence of functions is defined by a double recursion (one recursion equation on n, from n to $n+1$ \& one recursion equation on x, from x to $x+1$) as follows:

$$
\begin{aligned}
& \mathrm{f}_{0}(\mathrm{x})=\mathrm{x}+1 \\
& \mathrm{f}_{\mathrm{n}+1}(0)=\mathrm{f}_{\mathrm{n}}(1) \\
& \mathrm{f}_{\mathrm{n}+1}(\mathrm{x}+1)=\mathrm{f}_{\mathrm{n}}\left(\mathrm{f}_{\mathrm{n}+1}(\mathrm{x})\right)
\end{aligned}
$$

(rec def; $n, x \in$ nonneg int var)

- the first two equations
in the recursive definition
are just to get things started;
it's the third equation
that provides the bombshell growth;
it makes one step of one sequence
provide the growth of an entire initial segment
of the preceding sequence
- the growth and the size of $f_{n}(x)$
as n and x get larger
are phenomenal;
to illustrate this growth and size,
the number of digits
in the base 10 expansion of $f_{4}(3)$
is vastly more than
the estimated number of particles (however defined) in the observable universe;
Ackermann's diagonal function $f_{n}(n)$
of a single nonnegative integer variable n
and which is positive-integer-valued
is an example of a computable function
that is not primitive recursive

GG36-4

- it follows from the definition that
$\mathrm{f}_{0}(\mathrm{x})=\mathrm{x}+1$
$\mathrm{f}_{1}(\mathrm{x})=\mathrm{x}+2$
$f_{2}(x)=2 x+3$
$f_{3}(x)=2^{x+3}-3$
$f_{4}(x)=\left(\right.$ exponential tower of all $2^{\prime} s$ with $x+3$ stories $)-3$
to express $\mathrm{f}_{5}(\mathrm{x})$ and higher functions in closed form customary mathematical notation is inadequate; something beyond needs to be (and has been) designed; see below
- the Knuth up-arrow notation
permits the notational continuation of the sequence addition, multiplication, exponentiation, etc; it is described as follows where m and n are positive integers; association/parenthesizing on the right is understood; the up-arrow \uparrow may be read simply 'up'

$$
\begin{aligned}
& \mathrm{mn}=\mathrm{m}+\mathrm{m}+\cdots+\mathrm{m}(\mathrm{n} \text { terms) }(0 \text { arrows }) \\
& \mathrm{m} \uparrow \mathrm{n}=\mathrm{m} \times \mathrm{m} \times \cdots \times \mathrm{m}(\mathrm{n} \text { terms) (1 arrow) } \\
& \mathrm{m} \uparrow \uparrow \mathrm{n}=\mathrm{m} \uparrow \mathrm{~m} \uparrow \ldots \uparrow \mathrm{~m}(\mathrm{n} \text { terms) }(2 \text { arrows }) \\
& \mathrm{m} \uparrow \uparrow \uparrow \mathrm{n}=\mathrm{m} \uparrow \uparrow \mathrm{~m} \uparrow \uparrow \ldots \uparrow \uparrow \mathrm{~m}(\mathrm{n} \text { terms) }(3 \text { arrows })
\end{aligned}
$$

etc
note

$$
\begin{aligned}
\mathrm{mn} & =\text { ordinary multiplication } \\
& =\text { repeated addition }
\end{aligned}
$$

$$
\mathrm{m} \uparrow \mathrm{n}=\mathrm{m}^{\mathrm{n}}=\text { ordinary exponentiation }
$$

$$
=\text { repeated multiplication }
$$

$m \uparrow \uparrow n=$ power tower of n stories of m
$=$ repeated exponentiation

GG36-6

- it may be helpful to describe this notation in an informal way;
consider two positive integers m and n
separated by a finite sequence of up-arrows;
this notation stands for a positve integer
that is calculated as follows;
the process is recursive,
reducing the number of arrows in a gap
by one at each step
until (in principle) no arrow remains
and only ordinary multiplication remains;
to eliminate the terminal arrow say
between m and n ,
write down n terms of m with $n-1$ gaps;
fill each of the $\mathrm{n}-1$ gaps with one less arrow than before;
associate on the right;
repeat (in principle perhaps)
until the last arrow is eliminated
and only juxtaposition remains
which is then ordinary multiplication,
or equivalently until only one arrow remains
which then specifies ordinary exponentiation

GG36-7

- power towers ito up - arrows; up - arrows flatten power towers
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \cdots \in \operatorname{pos} \operatorname{int}$ (say)
\Rightarrow
$\mathrm{a}=\mathrm{a} \quad$ (power tower of 1 story)
$\mathrm{a}^{\mathrm{b}}=\mathrm{a} \uparrow \mathrm{b} \quad$ (power tower of 2 stories)
$\mathrm{a}^{\mathrm{c}}=\mathrm{a} \uparrow \mathrm{b} \uparrow \mathrm{c}$ (power tower of 3 stories)
etc
in general
an n - story power tower
needs $\mathrm{n}-1$ up - arrows \& n terms
to be flattened
wh $\mathrm{n} \in$ pos int;
if all n stories are the same a, then $\mathrm{a} \uparrow \uparrow \mathrm{n}$ will do

GG36-8

- we give some illustrative examples chosen from $\mathrm{m}, \mathrm{n}=2,3,4$
$2 \uparrow 2=2(\times) 2=2^{2}=4$
$2 \uparrow 3=2(\times) 2(\times) 2=2^{3}=8$
$2 \uparrow 4=2(\times) 2(\times) 2(\times) 2=2^{4}=16$

GG36-9

$$
\begin{aligned}
& 2 \uparrow \uparrow 2=2 \uparrow 2=4 \\
& 2 \uparrow \uparrow 3=2 \uparrow 2 \uparrow 2=2 \uparrow(2 \uparrow 2)=2 \uparrow 4=16 \\
& 2 \uparrow \uparrow 4=2 \uparrow 2 \uparrow 2 \uparrow 2=2 \uparrow 2 \uparrow(2 \uparrow 2) \\
& =2 \uparrow 2 \uparrow 4=2 \uparrow(2 \uparrow 4) \\
& =2 \uparrow 16=2^{16}=65536
\end{aligned}
$$

$$
\begin{aligned}
& 2 \uparrow \uparrow \uparrow 2=2 \uparrow \uparrow 2=2 \uparrow 2=4 \\
& 2 \uparrow \uparrow \uparrow 3=2 \uparrow \uparrow 2 \uparrow \uparrow 2=2 \uparrow \uparrow(2 \uparrow \uparrow 2)=2 \uparrow \uparrow 4 \\
& =2 \uparrow 2 \uparrow 2 \uparrow 2=2 \uparrow 2 \uparrow(2 \uparrow 2) \\
& =2 \uparrow 2 \uparrow 4=2 \uparrow(2 \uparrow 4) \\
& =2 \uparrow 16=2^{16}=65536 \\
& 2 \uparrow \uparrow \uparrow 4=2 \uparrow \uparrow 2 \uparrow \uparrow 2 \uparrow \uparrow 2=2 \uparrow \uparrow 2 \uparrow \uparrow(2 \uparrow \uparrow 2) \\
& =2 \uparrow \uparrow 2 \uparrow \uparrow 4=2 \uparrow \uparrow(2 \uparrow \uparrow 4)=2 \uparrow \uparrow 65536 \\
& =2 \uparrow 2 \uparrow \ldots \uparrow 2(65536 \text { terms })
\end{aligned}
$$

$$
\begin{aligned}
& 3 \uparrow 2=3(\times) 3=3^{2}=9 \\
& 3 \uparrow 3=3(\times) 3(\times) 3=3^{3}=27 \\
& 3 \uparrow 4=3(\times) 3(\times) 3(\times) 3=3^{4}=81
\end{aligned}
$$

$$
\begin{aligned}
& 3 \uparrow \uparrow 2=3 \uparrow 3=27 \\
& 3 \uparrow \uparrow 3=3 \uparrow 3 \uparrow 3=3 \uparrow(3 \uparrow 3)=3 \uparrow 27=3^{27} \\
& 3 \uparrow \uparrow 4=3 \uparrow 3 \uparrow 3 \uparrow 3=3 \uparrow 3 \uparrow(3 \uparrow 3) \\
& =3 \uparrow 3 \uparrow 27=3 \uparrow(3 \uparrow 27) \\
& =3 \uparrow 3^{27}=3^{3^{27}}
\end{aligned}
$$

$$
\begin{aligned}
& 3 \uparrow \uparrow \uparrow 2=3 \uparrow \uparrow 3=3^{27} \\
& 3 \uparrow \uparrow \uparrow 3=3 \uparrow \uparrow 3 \uparrow \uparrow 3=3 \uparrow \uparrow(3 \uparrow \uparrow 3)=3 \uparrow \uparrow 3^{27} \\
& =3 \uparrow 3 \uparrow \ldots \uparrow 3\left(3^{27} \text { terms }\right) \\
& 3 \uparrow \uparrow \uparrow 4=3 \uparrow \uparrow 3 \uparrow \uparrow 3 \uparrow \uparrow 3=3 \uparrow \uparrow 3 \uparrow \uparrow(3 \uparrow \uparrow 3) \\
& =3 \uparrow \uparrow 3 \uparrow \uparrow 3^{27}=3 \uparrow \uparrow\left(3 \uparrow \uparrow 3^{27}\right) \\
& =3 \uparrow 3 \uparrow \ldots \uparrow 3\left(3 \uparrow \uparrow 3^{27} \text { terms }\right)
\end{aligned}
$$

- ito the up-arrow notation the Ackermann sequence of functions is
$\mathrm{f}_{1}(\mathrm{x})=2+(\mathrm{x}+3)-3$
$\mathrm{f}_{2}(\mathrm{x})=2(\mathrm{x}+3)-3$
$\mathrm{f}_{3}(\mathrm{x})=2 \uparrow(\mathrm{x}+3)-3$
$\mathrm{f}_{4}(\mathrm{x})=2 \uparrow \uparrow(\mathrm{x}+3)-3$
$\mathrm{f}_{5}(\mathrm{x})=2 \uparrow \uparrow \uparrow(\mathrm{x}+3)-3$
etc
note that the number of arrows
is two less than the index
- in thinking about
the Ackermann sequence of functions
it may be helpful at times to consider the sequence of functions as an infinite matrix of positive integers (except for the entry of 0 in the corner) as follows:
the 1 st row $=$ the values of $x \quad$ from $x=0$ onward the 2 nd row $=$ the values of $f_{0}(x)$ from $x=0$ onward the 3rd row $=$ the values of $f_{1}(x)$ from $x=0$ onward etc
thus

GG36-16

$$
\begin{array}{llllllllllll}
\mathrm{x}: & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { etc }=\mathrm{x} \\
\mathrm{f}_{0}: 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & \text { etc }=\mathrm{x}+1 \\
\mathrm{f}_{1}: 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \text { etc }=\mathrm{x}+2 \\
\mathrm{f}_{2}: 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 \text { etc }=2 \mathrm{x}+3 \\
\mathrm{f}_{3}: 5 & 13 & 29 & 61 & 125 & & & & & \text { etc }=2^{\mathrm{x}+3}-3 \\
\text { etc }
\end{array}
$$

the first entry for each f is the second entry in the line above; to get a later entry for a given f, look at the value of the entry before and take the entry from the line above at that same value for x

- bioline

Wilhelm Ackermann
1896-1962
German
mathematical logician;
student and collaborator of Hilbert;
first defined an earlier version
of the present Ackermann function in 1928

GG36-18

