Quadratic Polynomials \& Equations

\#35 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG35-1 (23)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited
\square factoring \& solving quadratic polynomials \& equations
Δ in the following discussion
criteria are given ito the coefficients $\mathrm{a}, \mathrm{b}, \mathrm{c}$ for
(1) the factorability
of the quadratic polynomial
$a x^{2}+b x+c \quad(a \neq 0)$
(2) the solvability
of the quadratic equation
$a x^{2}+b x+c=0 \quad(a \neq 0)$
over

- the integer ring Z
- the rational field @
- the real field 罟
- the complex field \mathbb{C}
Δ also there is given the explicit factorization / solution of the quadratic polynomial / equation ito the coefficients when it is factorable / solvable over a particular system GG35-3
Δ theorems on factoring quadratic $=$ second degree
polynomials in one variable into two
linear $=$ first degree polynomial factors
Q. i when is a quadratic polynomial factorable ? it all depends on what you want the coefficients to be

D. discriminant

let

- $\mathrm{R} \in$ ring
- $a, b, c \in R$ wh $a \neq 0$
- $\mathrm{x} \in \operatorname{var} \mathrm{R}$
then
- the discriminant of the polynomial $a x^{2}+b x+c$ and of the equation $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$
over R
$={ }_{d n} \mathrm{D}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{D}$ wh $\mathrm{D} \leftarrow \underline{\text { discriminant }}$
$={ }_{d f} b^{2}-4 a c$

T. factorability over Z

let

- $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Z}$ wh $\mathrm{a} \neq 0$
- $x \in \operatorname{var}$ Z
then
- $a x^{2}+b x+c \in f c t / z$
\Leftrightarrow
$\mathrm{D} \in \operatorname{sqr}$ in Z

T. factorability over @

let

- $a, b, c \in @$ wh $a \neq 0$
- x $\in \operatorname{var}$ @
then
- $a x^{2}+b x+c \in f c t / @$
\Leftrightarrow
$\mathrm{D} \in \operatorname{sqr}$ in @

T. factorability over R $_{\Omega}$

let

- $a, b, c \in$ 尽 wh $a \neq 0$
- $x \in \operatorname{var}$ R
then
- $a x^{2}+b x+c \in f c t /$ 回
\Leftrightarrow
$\mathrm{D} \geq 0$

T. factorability over \mathbb{C}

let

- $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{C}$ wh $\mathrm{a} \neq 0$
- $\mathrm{x} \in \operatorname{var} \mathbb{C}$
then
- $a x^{2}+b x+c \in$ always fct/ \mathbb{C}
Q. i when is a quadratic polynomial a perfect square ? it all depends on what you want the coefficients to be
D. polynomial ring
let
- $\mathrm{R} \in$ ring
- $\mathrm{x} \in$ indeterminate
then
- the polynomial ring in x over R
$={ }_{\mathrm{dn}} \mathrm{R}[\mathrm{x}]$
$={ }_{\mathrm{rd}} \mathrm{R}$ bracket x
$={ }_{\mathrm{df}}$ the ring of all polynomials in x with coefficients from R
T. perfect squares in $\mathbb{Z}[\mathrm{x}]$
let
- $a, b, c \in \mathbb{Z}$ wh $a \neq 0$
- $x \in \operatorname{var} \mathbb{Z}$
then
- $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c} \in \mathrm{sqr}$ in $\mathbb{Z}[\mathrm{x}]$ \Leftrightarrow
$\mathrm{D}=0 \& \mathrm{a}, \mathrm{c} \in \mathrm{sqr}$ in \mathbb{Z}

T. perfect squares in $\mathbb{@}[\mathrm{x}]$

let

- $\mathrm{a}, \mathrm{b}, \mathrm{c} \in$ @ wh $\mathrm{a} \neq 0$
- x $\in \operatorname{var@}$
then
- $a x^{2}+b x+c \in \operatorname{sqr}$ in @ [x]
\Leftrightarrow
$D=0 \& a, c \in \operatorname{sqr}$ in @

T. perfect squares in $\mathbb{R}[x]$

let

- $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{R}$ wh $\mathrm{a} \neq 0$
- $x \in \operatorname{var}{ }^{R}$
then
- $a x^{2}+b x+c \in \operatorname{sqr}$ in $\Re_{\Omega}[x]$
\Leftrightarrow
$\mathrm{D}=0 \& \mathrm{a}>0 \& \mathrm{c} \geq 0$
T. perfect squares in $\mathbb{C}[x]$
let
- $a, b, c \in \mathbb{C}$ wh $a \neq 0$
- $\mathrm{x} \in \operatorname{var} \mathbb{C}$
then
- $a x^{2}+b x+c \in \operatorname{sqr}$ in $\mathbb{C}[x]$
\Leftrightarrow
$\mathrm{D}=0$
Δ the quadratic formula
over $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}$ in turn
which gives
in a specified number system
all solutions
of the quadratic equation
explicitly ito the coefficients
if any solution exists
Q. ¿ when is a quadratic equation solvable?
it all depends on what number system
you want to solve it in
T. the quadratic formula over \mathbb{C}
let
- $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{C}$ wh $\mathrm{a} \neq 0$
- $\mathrm{x} \in \operatorname{var} \mathbb{C}$
then
- $a x^{2}+b x+c=0 \quad(\exists x \in \mathbb{C})$
- $a x^{2}+b x+c=0$
\Leftrightarrow
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad(\forall \mathrm{x} \in \mathbb{C})$

GG35-16

T．the quadratic formula over R^{Ω}

let

- $a, b, c \in$ 思 wh $a \neq 0$
- $x \in \operatorname{var}$ 思
then
－$a x^{2}+b x+c=0 \quad(\exists x \in$ 圆 $)$
\Leftrightarrow
$b^{2}-4 a c \geq 0$
－$a x^{2}+b x+c=0$
\Leftrightarrow
$b^{2}-4 a c \geq 0$
\＆
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad(\forall \mathrm{x} \in$ 圆 $)$

GG35－17

T. the quadratic formula over @

let

- $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{Q}$
- $\mathrm{x} \in \operatorname{var}$ @
then
- $a x^{2}+b x+c=0 \quad(\exists x \in @)$
\Leftrightarrow
$b^{2}-4 a c \in \operatorname{sqr}$ in @
- $a x^{2}+b x+c=0$
\Leftrightarrow
$b^{2}-4 a c \in \operatorname{sqr}$ in @
\&
$\mathrm{x}=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \quad(\forall \mathrm{x} \in @)$

GG35-18

T. the quadratic formula over Z

let

- $a, b, c \in z$ wh $a \neq 0$
- $x \in \operatorname{var} \mathbb{Z}$
then
- $a x^{2}+b x+c=0 \quad(\exists x \in \mathbb{Z})$
\Leftrightarrow
$b^{2}-4 a c \in \operatorname{sqr}$ in \mathbb{Z}
\&
$b \equiv \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}} \quad(\bmod 2 \mathrm{a})$
- $a x^{2}+b x+c=0$
\Leftrightarrow
$b^{2}-4 a c \in \operatorname{sqr}$ in \mathbb{Z}
\&
$\left(b \equiv \sqrt{b^{2}-4 a c} \quad(\bmod 2 a)\right.$
\&
$x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
or
$b \equiv-\sqrt{b^{2}-4 a c} \quad(\bmod 2 a)$
\&
$\left.\mathrm{x}=\frac{-\mathrm{b}-\sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}\right) \quad(\forall \mathrm{x} \in \mathrm{Z})$

GG35-20
Δ relations between quadratic polynomials / equations
\& their zeros / roots
T. relating the quadratic polynomial \& its zeros to the quadratic equation $\&$ its roots
let
$\cdot \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbb{C}$ wh $\mathrm{a} \neq 0$
$\cdot r={ }_{d f} \frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$

- $\mathrm{S}==_{\mathrm{df}} \frac{-\mathrm{b}-\sqrt{\mathrm{b}^{2}-4 a c}}{2 a}$
- $\mathrm{x} \in \operatorname{var} \mathbb{C}$

GG35-21
then

- r and s are the two zeros of the quadratic polynomial $a x^{2}+b x+c$ wiet
r and s are the two roots of the quadratic equation $a x^{2}+b x+c=0$ wiet
$a x^{2}+b x+c=0$
\Leftrightarrow
$\mathrm{x}=\mathrm{r} \vee \mathrm{X}=\mathrm{s}$
\Leftrightarrow
$\mathrm{x} \in\{\mathrm{r}, \mathrm{s}\} \quad(\forall \mathrm{x} \in \mathbb{C})$
- $a x^{2}+b x+c=a(x-r)(x-s) \quad(\forall x \in \mathbb{C})$ which prescribes an algorithm for explicitly factoring any quadratic polynomial over any one of the rings $\mathbb{C}, ~ \mathbb{R}, \mathbb{Q}, \mathbb{Z}$ into two linear factors if it is indeed so factorable
- $\mathrm{r}+\mathrm{s}=-\frac{\mathrm{b}}{\mathrm{a}} \& \mathrm{rs}=\frac{\mathrm{c}}{\mathrm{a}}$
R. uniqueness of factors
- the two linear factors
of a factorable quadratic polynomial over one of the rings
© , 起, @, Z
are essentially unique
inp
they are unique to within a constant factor and their order as factors
Δ the preceding theorems
are special cases of more inclusive / general theorems

GG35-23

