Posets \& Tosets \& Wosets \#34 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2003

GG34-1 (116)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG34-2
\square a quick glance at the calculus of relations

- X \in set; all considerations are relative to X ; what ensues is
' a function of X^{\prime}
- $x, y, z \in \operatorname{var} X$

GG34-3

- a relation
$={ }_{d f}$ a set of ordered pairs of elements of X
$=$ a subset of $X \times X$
- the relation space
$={ }_{\mathrm{dn}}$ Rel
$={ }_{\mathrm{df}}$ the set of all relations
$=$ the set of all subsets of $\mathrm{X} \times \mathrm{X}$
$=$ the power set of $X \times X$
$=\wp(\mathrm{X} \times \mathrm{X})$
$\bullet R, S \in \operatorname{var} \operatorname{Rel}$

GG34-4

- the universal relation
$={ }_{\mathrm{dn}} \mathrm{V}$
$={ }_{\mathrm{df}} \mathrm{X} \times \mathrm{X}$
$=\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \mathrm{X}\}$
- the null relation
$={ }_{\mathrm{dn}} \Lambda$
$={ }_{\mathrm{df}} \varnothing$
- the identity relation
$={ }_{\mathrm{dn}} \Delta$
$={ }_{\text {rd }}$ del wh del \leftarrow delta
$={ }_{d f}\{(x, y) \mid x, y \in X \& x=y\}$
$=\{(x, x) \mid x \in X\}$
$=$ the diagonal of $\mathrm{X} \times \mathrm{X}$
- the diversity relation
$={ }_{d n} \nabla$
$={ }_{\text {rd }}$ codel wh codel \leftarrow complement of del
$={ }_{d f}\{(x, y) \mid x, y \in X \& x \neq y\}$
$=$ the codiagonal of $\mathrm{X} \times \mathrm{X}$
- relationship between elements of X :
x bears the relation R to y
$=\mathrm{x}$ bears R to y
$=_{\mathrm{dn}} \mathrm{xRy}$
${ }^{{ }_{\mathrm{df}}}(\mathrm{x}, \mathrm{y}) \in \mathrm{R}$
\&
$x R y S z$
$=_{\mathrm{df}} \mathrm{xRy} \& \mathrm{ySz}$
etc
- the negation of R
$=_{\mathrm{dn}} \mathrm{R}$
$=_{\mathrm{rd}} \operatorname{not} \mathrm{R}$
$=_{\mathrm{df}}\{(\mathrm{x}, \mathrm{y}) \mid \neg \mathrm{xRy}\}$
$=$ the complement of R in $\mathrm{X} \times \mathrm{X}$
- relational negation
$=_{\mathrm{df}}$ the involution of Rel
$\mathrm{R} \mapsto \mathrm{R}$

GG34-7

- the converse of R
$={ }_{d n} \breve{\mathrm{R}}$
$={ }_{\text {rd }} \mathrm{R}$ con wh con \leftarrow converse
$={ }_{\mathrm{df}}\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{yRx}\}$
- relational conversion
$={ }_{\mathrm{df}}$ the involution of Rel
$\mathrm{R} \mapsto \widetilde{\mathrm{R}}$
- the product of R and S
$=_{\mathrm{dn}} \mathrm{RS}$
$={ }_{r d} R$ times S
$=_{\text {df }}\{(x, z) \mid \exists y . x R y \& y S z\}$
- relational multiplication
$=_{\text {df }}$ the binary operation in Rel
$(R, S) \mapsto R S$
- the square of R
$=_{d n} R^{2}$
$=_{\mathrm{rd}} \mathrm{R}$ square (d)
$=_{\mathrm{df}} \mathrm{RR}$

GG34-9

- R is reflexive
$=_{\mathrm{df}} \Delta \subset \mathrm{R}$
$\Leftrightarrow \mathrm{xRx}(\forall \mathrm{x})$
- R is irreflexive
$=_{\mathrm{df}} \mathrm{R} \subset \nabla$
$\Leftrightarrow \mathrm{xRx}(\forall \mathrm{x})$
- R is symmetric
$=_{\mathrm{df}} \breve{\mathrm{R}}=\mathrm{R}$
$\Leftrightarrow \mathrm{xRy} \Leftrightarrow \mathrm{yRx} \quad(\forall \mathrm{x}, \mathrm{y})$
$\Leftrightarrow \mathrm{xRy} \Rightarrow \mathrm{yRx} \quad(\forall \mathrm{x}, \mathrm{y})$
- R is asymmetric
$=_{\mathrm{df}} \mathrm{R} \cap \widetilde{\mathrm{R}}=\Lambda$
$\Leftrightarrow x R y \Rightarrow y R x \quad(\forall x, y)$
- R is antisymmetric
$=_{\mathrm{df}} \mathrm{R} \cap \widetilde{\mathrm{R}} \subset \Delta$
$\Leftrightarrow x R y \& y R x \Rightarrow x=y \quad(\forall x, y)$
- R is connected
$={ }_{\mathrm{df}} \nabla \subset \mathrm{R} \cup \widetilde{\mathrm{R}}$
$\Leftrightarrow \mathrm{x} \neq \mathrm{y} \Rightarrow \mathrm{xRy} \vee \mathrm{yRx} \quad(\forall \mathrm{x}, \mathrm{y})$
- R is transitive
$={ }_{\mathrm{df}} \mathrm{R}^{2} \subset \mathrm{R}$
$\Leftrightarrow x R y \& y R z \Rightarrow x R z \quad(\forall x, y, z)$

GG34-11

- the image of x under R
$=$ the projection of x by R
$={ }_{d n} x R$
$={ }_{\mathrm{df}}\{\mathrm{y} \mid \mathrm{xRy}\}$
- $\mathrm{A} \subset \mathrm{X} \Rightarrow$
the image of A under R
$=$ the projection of A by R
$={ }_{\mathrm{dn}}$ AR
$={ }_{\mathrm{df}} \cup\{\mathrm{xR} \mid \mathrm{x} \in \mathrm{A}\}$
- relational projection
$={ }_{\text {df }}$ the function $\wp \mathrm{X} \times \mathrm{Rel} \rightarrow \wp \mathrm{X}$
$(\mathrm{A}, \mathrm{R}) \mapsto \mathrm{AR}$

GG34-12

- the domain of R
$={ }_{d n} d m n R$
$={ }_{\mathrm{df}} \mathrm{XR}$
$=\{x \mid \exists y \cdot x R y\}$
- the range of R
$={ }_{d n} \operatorname{rng} R$
$={ }_{\mathrm{df}} \mathrm{XR}$
$=\{y \mid \exists x \cdot x R y\}$
- the field of R
$={ }_{\mathrm{dn}}$ fld R
$={ }_{\mathrm{df}} \mathrm{dmnR} \cup \mathrm{rngR}$
note: the abbreviating notation dmn, rng, fld consists of the consonants in the words domain, range, field

GG34-13

- an R - descending sequence
$=_{\text {df }}$ a sequence
$\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{x}_{3}, \cdots$
of pairwise distinct elements of fld R st
$\mathrm{x}_{1} \breve{\mathrm{R}} \mathrm{x}_{2} \breve{\mathrm{R}} \mathrm{x}_{3} \breve{\mathrm{R}} \ldots$
which may be written
$\cdots \mathrm{Rx}_{3} \mathrm{Rx}_{2} \mathrm{Rx}_{1}$
- an R - ascending sequence
$=_{\text {df }}$ a sequence
$\mathrm{x}_{1}, \mathrm{X}_{2}, \mathrm{X}_{3}, \cdots$
of pairwise distinct elements of fld R st
$x_{1} \mathrm{Rx}_{2} \mathrm{Rx}_{3} \mathrm{R} \cdots$

GG34-14

- R is left - founded
$={ }_{d f}$ there does not exist an R - descending sequence
- R is right - founded
$={ }_{\mathrm{df}}$ there does not exist an R - ascending sequence
note: here ' founded' has the meaning
' has a base / foundation'

GG34-15
\square the notion \& notation of order in a set

- in defining an ordered set
or
a partially ordered set
or
a totally ordered set
etc
whether in general or in particular one is faced with the choice of notation viz
to use \leq or \geq or $<$ or $>$ as the initial defining order relation;
the notion of wedge
(just take all four of them)
overcomes that notational awkwardness;
now define the however ordered set as
a set provided with a wedge
\& then make the usual statements;
in this way all four relations have equal status
right from the beginning
\& one can choose in definition or development whatever relation happens to be the most convenient;
¿ why the word 'wedge' ?
each of the four inequality signs
$\leq, \geq,<,>$
contains or is a wedge-shaped mark;
so the four altogether constitute
a packet of wedges $=$ a wedge pack
or simply 'wedge' for short;
GG34-16
each of the four relations
$\leq, \geq,<,>$
in a wedge
should uniquely determine the other three; if this customary notation for order is used, then the following should be the case:
the notation \leq or \geq should be used for a relation only if the relation is reflexive at least \&
the notation < or > should be used for a relation only if the relation is irreflexive at least;
\leq should mean $<$ or $=$
\&
\geq should mean $>$ or $=$
\&
$<$ should mean \leq and \neq
\&
$>$ should mean \geq and \neq;
\leq and \geq should be converses of each other;
$<$ and $>$ should be converses of each other;
these considerations
lead to the notion of wedge

GG34-17
D. wedges
let
$X \in \operatorname{set}$
then
a wedge of X
$=_{\mathrm{df}}$ an ordered pair of ordered pairs of relations in X
$={ }_{\mathrm{dn}}((\leq,<),(\geq,>))$ canonically
$={ }_{a b}(\leq,<; \geq,>)$
st

- $\leq=\geq$ whet $\geq=\leq$
- $<=>$ whet $>=<$
- $\leq \cap \nabla=<\& \leq=<\cup \Delta$
$\cdot \geq \cap \nabla=>\& \geq=>\cup \Delta$
(some redundancy here)

GG34-18
D. wedged sets

- a wedged set
$=_{\mathrm{df}}$ a set X equipped with
a wedge $(\leq,<; \geq,>)$ of X ie
an ordered pair
(X, ($\leq,<; \geq,>)$)
consisting of a set X
and a wedge $(\leq,<; \geq,>)$ of X ; notationally
it is customary to call X alone the wedged set
rather than to call the ordered pair only the wedged set, the order notation being understood;
such an abbreviating notational device occurs frequently in mathematics

GG34-19
R. every duality is based upon an involution; the following duality is based upon relational conversion
T. law of duality for wedges
let

- $\mathrm{X} \in$ set
- $\leq,<, \geq,>\in \operatorname{rel}$ in X
then
$(\leq,<; \geq,>) \in$ wedge of X
\Leftrightarrow
$(\geq,>; \leq,<) \in$ wedge of X
D. the above observation leads to the following definitions:
- the dual of the wedge $(\leq,<; \geq,>)$ of a set X
$={ }_{\mathrm{df}}$ the wedge $(\geq,>; \leq,<)$ of X
- the dual of the wedged set $(\mathrm{X},(\leq,<; \geq,>))$
$={ }_{\mathrm{df}}$ the wedged $\operatorname{set}(\mathrm{X},(\geq,>; \leq,<))$
GG34-20
D. terminology for wedged sets
let
- $\mathrm{X} \in$ wedged set
- $x, y \in X$
then
- $\leq=_{\mathrm{cl}}$ the weak lohi inequality in X
- $<=_{\mathrm{cl}}$ the strict lohi inequality in X
- $\geq=_{c l}$ the weak hilo inequality in X
- $>=_{c l}$ the strict hilo inequality in X
- $\mathrm{x} \leq \mathrm{y}={ }_{\mathrm{rd}} \mathrm{x}$ is weakly less than y
- $\mathrm{x}<\mathrm{y}=_{\mathrm{rd}} \mathrm{x}$ is strictly less than y
- $x \geq y={ }_{r d} x$ is weakly greater than y
- $x>y=_{r d} x$ is strictly greater than y

syntactically

- $\leq=_{\mathrm{cl}}$ the weak lohi inequality sign
- $<=_{\mathrm{cl}}$ the strict lohi inequality sign
- $\geq=_{\mathrm{cl}}$ the weak hilo inequality sign
- $>=_{\mathrm{cl}}$ the strict hilo inequality sign
- $太=_{\mathrm{cl}}$ the negated weak lohi inequality in X
- $K==_{\mathrm{cl}}$ the negated strict lohi inequality in X
- $\geq=_{\mathrm{cl}}$ the negated weak hilo inequality in X
- $\ngtr=_{\mathrm{cl}}$ the negated strict hilo inequality in X
- $\mathrm{x} \pm \mathrm{y}==_{\mathrm{rd}} \mathrm{x}$ is not weakly less than y
- $\mathrm{x} \nless \mathrm{y}==_{\mathrm{rd}} \mathrm{x}$ is not strictly less than y
$\bullet \mathrm{x} \not \geq \mathrm{y}=_{\mathrm{rd}} \mathrm{x}$ is not weakly greater than y
- $\mathrm{x} \ngtr \mathrm{y}={ }_{\mathrm{rd}} \mathrm{x}$ is not strictly greater than y
syntactically
- $太=_{\mathrm{cl}}$ the negated weak lohi inequality sign
- $K={ }_{c l}$ the negated strict lohi inequality sign
- $\geq=_{\mathrm{cl}}$ the negated weak hilo inequality sign
- $\ngtr=_{\mathrm{cl}}$ the negated strict hilo inequality sign
note:
lohi \leftarrow low high
hilo \leftarrow high low

GG34-22
R. let

- $\mathrm{X} \in$ wedged set
then
- \leq is reflexive in X
ie
$\mathrm{x} \leq \mathrm{x} \quad(\forall \mathrm{x} \in \mathrm{X})$
- \geq is reflexive in X ie
$x \geq x \quad(\forall x \in X)$
- < is irreflexive in X ie $x \nless x \quad(\forall x \in X)$
- $>$ is irreflexive in X ie
$x \ngtr x \quad(\forall x \in X)$

GG34-23
R. let

- $X \in$ set
- $\mathrm{R} \in$ reflexive relation in X
- $\leq=_{d f} R$
- $<=_{\text {df }} \mathrm{R} \cap \nabla$
- $\geq=_{d f} \breve{\mathrm{R}}$
- $>=_{d f} \breve{\mathrm{R}} \cap \nabla$
then
- $(\leq,<; \geq,>) \in$ wedge of X
R. let
- $\mathrm{X} \in \mathrm{set}$
- $\mathrm{R} \in$ reflexive relation in X
then
- there exists exactly one wedge $(\leq,<; \geq,>)$ of X st $\leq=R$

GG34-24
R. let

- $X \in$ set
- $\mathrm{R} \in$ reflexive relation in X
- $\geq=_{\mathrm{df}} \mathrm{R}$
- $>={ }_{\text {df }} \mathrm{R} \cap \nabla$
- $\leq=_{d f} \breve{\mathrm{R}}$
- $<=_{\text {df }} \breve{\mathrm{R}} \cap \nabla$
then
- $(\leq,<; \geq,>) \in$ wedge of X
R. let
- $\mathrm{X} \in \mathrm{set}$
- $\mathrm{R} \in$ reflexive relation in X
then
- there exists exactly one wedge $(\leq,<; \geq,>)$ of X st $\geq=R$

GG34-25
R. let

- $X \in$ set
- $\mathrm{R} \in$ irreflexive relation in X
- $<=_{\mathrm{df}} \mathrm{R}$
- $\leq=_{\text {df }} \mathrm{R} \cup \Delta$
- $>=_{\mathrm{df}} \breve{\mathrm{R}}$
- $\geq=_{\text {df }} \breve{\mathrm{R}} \cup \Delta$
then
- $(\leq,<; \geq,>) \in$ wedge of X
R. let
- $\mathrm{X} \in$ set
- $\mathrm{R} \in$ irreflexive relation in X
then
- there exists exactly one wedge $(\leq,<; \geq,>)$ of X st $<=R$

GG34-26
R. let

- $X \in \operatorname{set}$
- $\mathrm{R} \in$ irreflexive relation in X
- $>=_{\mathrm{df}} \mathrm{R}$
- $\geq=_{\text {df }} \mathrm{R} \cup \Delta$
- $<=_{d f} \breve{\mathrm{R}}$
- $\leq=_{\text {df }} \breve{\mathrm{R}} \cup \Delta$
then
- $(\leq,<; \geq,>) \in$ wedge of X
R. let
- $\mathrm{X} \in \mathrm{set}$
- $\mathrm{R} \in$ irreflexive relation in X
then
- there exists exactly one wedge $(\leq,<; \geq,>)$ of X st $>=R$

GG34-27
D. intervals
let

- $\mathrm{X} \in$ wedged set
- $\mathrm{a}, \mathrm{b} \in \mathrm{X}$
then
- the closed interval of X from a to b
$={ }_{\mathrm{dn}} \mathrm{X}[\mathrm{a}, \mathrm{b}]$
$={ }_{d f}\{x \mid x \in X \& a \leq x \leq b\}$
$\& \therefore$
$\mathrm{x} \in \mathrm{X}[\mathrm{a}, \mathrm{b}] \Leftrightarrow \mathrm{x} \in \mathrm{X} \& \mathrm{a} \leq \mathrm{x} \leq \mathrm{b}$
- the open interval of X from a to b
$=_{\mathrm{dn}} \mathrm{X}(\mathrm{a}, \mathrm{b})$
$={ }_{d f}\{x \mid x \in X \& a<x<b\}$
$\& \therefore$
$\mathrm{x} \in \mathrm{X}(\mathrm{a}, \mathrm{b}) \Leftrightarrow \mathrm{x} \in \mathrm{X} \& \mathrm{a}<\mathrm{x}<\mathrm{b}$

GG34-28

- the left - closed right - open interval of X from a to b
$={ }_{d n} X[a, b)$
$={ }_{d f}\{x \mid x \in X \& a \leq x<b\}$ \& \therefore
$x \in X[a, b) \Leftrightarrow x \in X \& a \leq x<b$
- the left - open right - closed interval of X from a to b
$={ }_{\mathrm{dn}} \mathrm{X}(\mathrm{a}, \mathrm{b}]$
$={ }_{d f}\{x \mid x \in X \& a<x \leq b\}$
\& \therefore
$\mathrm{x} \in \mathrm{X}(\mathrm{a}, \mathrm{b}] \Leftrightarrow \mathrm{x} \in \mathrm{X} \& \mathrm{a}<\mathrm{x} \leq \mathrm{b}$
- a half - closed / half - open / semi-closed / semi - open interval of X from a to b
$={ }_{d f} X[a, b)$ or $X(a, b]$

GG34-29
D. points relating to intervals let

- $\mathrm{X} \in$ wedged set
- $a, b \in X$
- I stands for any one of the intervals
$\mathrm{X}[\mathrm{a}, \mathrm{b}]$
$X(a, b)$
$X[a, b)$
$\mathrm{X}(\mathrm{a}, \mathrm{b}]$
then
- an endpoint of I
$={ }_{\mathrm{df}} \mathrm{a}$ or b
- the left / initial endpoint of I
$={ }_{\mathrm{df}} \mathrm{a}$
- the right / terminal endpoint of I
$={ }_{\mathrm{df}} \mathrm{b}$
- the boundary of I
$={ }_{\mathrm{df}}\{\mathrm{a}, \mathrm{b}\}$
GG34-30
- an interior point of I
$=$ an inpoint of I
$=\mathrm{a}$ point that is interior to I
$={ }_{\mathrm{df}}$ an element of $\mathrm{X}(\mathrm{a}, \mathrm{b})$
- the interior of I
$={ }_{\mathrm{df}} \mathrm{X}(\mathrm{a}, \mathrm{b})$
- an exterior point of I
$=$ an expoint of I
$=$ a point that is exterior to I
$={ }_{\mathrm{df}}$ an element of $\mathrm{X}(\leftarrow, \mathrm{a}) \cup \mathrm{X}(\mathrm{b}, \rightarrow)$
- the exterior of I

$$
=_{\mathrm{df}} \mathrm{X}(\leftarrow, \mathrm{a}) \cup \mathrm{X}(\mathrm{~b}, \rightarrow)
$$

D. rays

let

- $\mathrm{X} \in$ wedged set
- $\mathrm{a} \in \mathrm{X}$
then
- the closed right ray of X from a
$={ }_{\mathrm{dn}} \mathrm{X}[\mathrm{a}, \rightarrow$)
$={ }_{d f}\{x \mid x \in X \& a \leq x\}$
\& \therefore
$x \in X[a, \rightarrow) \Leftrightarrow x \in X \& a \leq x$
- the open right ray of X from a
$={ }_{\mathrm{dn}} \mathrm{X}(\mathrm{a}, \rightarrow)$
$={ }_{d f}\{x \mid x \in X \& a<x\}$
\& \therefore
$\mathrm{x} \in \mathrm{X}(\mathrm{a}, \rightarrow) \Leftrightarrow \mathrm{x} \in \mathrm{X} \& \mathrm{a}<\mathrm{x}$

GG34-32

- the closed left ray of X from a
$={ }_{\mathrm{dn}} \mathrm{X}(\leftarrow, \mathrm{a}]$
$={ }_{d f}\{x \mid x \in X \& x \leq a\}$
\& \therefore
$\mathrm{x} \in \mathrm{X}(\leftarrow, \mathrm{a}] \Leftrightarrow \mathrm{x} \in \mathrm{X} \& \mathrm{x} \leq \mathrm{a}$
- the open left ray of X from a
$={ }_{\mathrm{dn}} \mathrm{X}(\leftarrow, \mathrm{a})$
$={ }_{d f}\{x \mid x \in X \& x<a\}$
\& \therefore
$\mathrm{x} \in \mathrm{X}(\leftarrow, \mathrm{a}) \Leftrightarrow \mathrm{x} \in \mathrm{X} \& \mathrm{x}<\mathrm{a}$
D. points relating to rays
let
- $\mathrm{X} \in$ wedged set
- $a \in X$
then
- the endpoint / vertex / boundary of
$\mathrm{X}[\mathrm{a}, \rightarrow$)
or
$\mathrm{X}(\mathrm{a}, \rightarrow)$
or
$\mathrm{X}(\leftarrow, \mathrm{a}]$
or
$\mathrm{X}(\leftarrow, \mathrm{a})$
$={ }_{\mathrm{df}} \mathrm{a}$

GG34-34

- an interior point of $\mathrm{X}[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$=$ an inpoint of $X[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$=$ a point that is interior to $\mathrm{X}[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$={ }_{\mathrm{df}}$ an element of $\mathrm{X}(\mathrm{a}, \rightarrow)$
- the interior of $\mathrm{X}[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$={ }_{\mathrm{df}} \mathrm{X}(\mathrm{a}, \rightarrow)$
- an exterior point of $\mathrm{X}[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$=$ an expoint of $\mathrm{X}[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$=$ a point that is exterior to $\mathrm{X}[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$={ }_{\text {df }}$ an element of $\mathrm{X}(\leftarrow, \mathrm{a})$
- the exterior of $\mathrm{X}[\mathrm{a}, \rightarrow)$ or $\mathrm{X}(\mathrm{a}, \rightarrow)$
$={ }_{\mathrm{df}} \mathrm{X}(\leftarrow, \mathrm{a})$

GG34-35

- an interior point of $\mathrm{X}(\leftarrow, \mathrm{a}]$ or $\mathrm{X}(\leftarrow, \mathrm{a})$
$=$ an inpoint of $\mathrm{X}(\leftarrow, \mathrm{a}]$ or $\mathrm{X}(\leftarrow, \mathrm{a})$
$=$ a point that is interior to $X(\leftarrow, a]$ or $X(\leftarrow, a)$
$={ }_{\text {df }}$ an element of $\mathrm{X}(\leftarrow, \mathrm{a})$
- the interior of $\mathrm{X}(\leftarrow, \mathrm{a}]$ or $\mathrm{X}(\leftarrow, \mathrm{a})$
$={ }_{\mathrm{df}} \mathrm{X}(\leftarrow, \mathrm{a})$
- an exterior point of $\mathrm{X}(\leftarrow, \mathrm{a}]$ or $\mathrm{X}(\leftarrow, \mathrm{a})$
$=$ an expoint of $\mathrm{X}(\leftarrow$, a] or $\mathrm{X}(\leftarrow, \mathrm{a})$
$=$ a point that is exterior to $\mathrm{X}(\leftarrow, \mathrm{a}]$ or $\mathrm{X}(\leftarrow, \mathrm{a})$
$={ }_{\mathrm{df}}$ an element of $\mathrm{X}(\mathrm{a}, \rightarrow)$
- the exterior of $\mathrm{X}(\leftarrow$, a] or $\mathrm{X}(\leftarrow, \mathrm{a})$
$={ }_{\mathrm{df}} \mathrm{X}(\mathrm{a}, \rightarrow)$

GG34-36

D. partially ordered sets

a partially ordered set
$={ }_{a b}$ poset
$={ }_{\mathrm{df}}$ a wedged set X st

- \leq is a reflexive antisymmetric transitive relation in X
ie
- these proprties hold:
reflexivity of \leq in X
$x \leq x \quad(x \in X)$
\&
antisymmetry of \leq in X
$x \leq y \& y \leq x \Rightarrow x=y \quad(x, y \in X)$
\&
transitivity of \leq in X
$\mathrm{x} \leq \mathrm{y} \& \mathrm{y} \leq \mathrm{z} \Rightarrow \mathrm{x} \leq \mathrm{z} \quad(\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X})$

GG34-37
wiet

- \geq is a reflexive antisymmetric transitive relation in X
ie
- these properties hold:
reflexivity of \geq in X
$x \geq x \quad(x \in X)$
\&
antisymmetry of \geq in X
$x \geq y \& y \geq x \Rightarrow x=y \quad(x, y \in X)$
\&
transitivity of \geq in X
$x \geq y \& y \geq z \Rightarrow x \geq z \quad(x, y, z \in X)$

GG34-38

wiet

- < is an irreflexive transitive relation in X
ie
- these properties hold:
irreflexivity of $<$ in X
$x \nless x \quad(x \in X)$
\&
transitivity of $<$ in X
$\mathrm{x}<\mathrm{y} \& \mathrm{y}<\mathrm{z} \Rightarrow \mathrm{x}<\mathrm{z} \quad(\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X})$

GG34-39
wiet

- $>$ is an irreflexive transitive relation in X
ie
- these properties hold:
irreflexivity of $>$ in X
$x \ngtr x \quad(x \in X)$
\&
transitivity of $>$ in X
$x>y \& y>z \Rightarrow x>z \quad(x, y, z \in X)$

GG34-40
C. the mention of reflexivity \& irreflexivity in the preceding definition is logically correct but unnecessary
since the component relations of a wedge have these properties automatically; however, the following considerations show that the inclusion is desirable for an easier overview of the basic notions

GG34-41
D. the following definitions
are essentially equivalent:
$X \in$ set
\Rightarrow

- a partial order in X
$={ }_{\mathrm{df}}$ a reflexive antisymmetric transitive relation in X
where the notation \leq or \geq is used for this relation \&
- a partial order in X
$={ }_{\mathrm{df}}$ an irreflexive transitive relation in X
where the notation $<$ or $>$ is used for this relation
D. the following definition is essentially equivalent to the preceding definition of poset as a wedged set of a certain kind:
- a partially ordered set
$=_{\mathrm{df}}$ a set X equipped with a partial order in X
GG34-42

D. comparable elements

 let- $\mathrm{X} \in$ wedged set
- $x, y \in X$

then

- x is comparable to / with y
$=\mathrm{x}$ and y are comparable
$={ }_{\mathrm{dn}} \mathrm{X} \sim \mathrm{y}$
$=_{r d} \mathrm{x}$ comp y
$={ }_{\mathrm{df}} \mathrm{x} \neq \mathrm{y} \Rightarrow \mathrm{x}<\mathrm{y} \vee \mathrm{x}>\mathrm{y}$
$\Leftrightarrow x<y \vee x=y \vee x>y$
$\Leftrightarrow \mathrm{x} \leq \mathrm{y} \vee \mathrm{x}>\mathrm{y}$
$\Leftrightarrow \mathrm{x}<\mathrm{y} \vee \mathrm{x} \geq \mathrm{y}$
$\Leftrightarrow x \leq y \vee x \geq y$
- x is incomparable to / with y
$=\mathrm{x}$ and y are incomparable
$={ }_{\mathrm{dn}} \mathrm{x} \nleftarrow \mathrm{y}$
$={ }_{\mathrm{rd}} \mathrm{x}$ incomp y
$={ }_{\mathrm{df}} \neg \mathrm{X} \sim \mathrm{y}$
R. connectivity
let
- $\mathrm{X} \in$ wedged set
then
tfsape
- every pair of elements of X are comparable
- \leq is connected in X
- \geq is connected in X
- $<$ is connected in X
- $>$ is connected in X

GG34-44
D. totally ordered sets
a totally ordered set
$={ }_{a b}$ toset
$={ }_{\mathrm{df}}$ a wedged set X st

- \leq is a reflexive antisymmetric transitive connected relation in X
ie
- these proprties hold: reflexivity of \leq in X
$x \leq x \quad(x \in X)$
\&
antisymmetry of \leq in X
$\mathrm{x} \leq \mathrm{y} \& \mathrm{y} \leq \mathrm{x} \Rightarrow \mathrm{x}=\mathrm{y} \quad(\mathrm{x}, \mathrm{y} \in \mathrm{X})$
\&
transitivity of \leq in X
$x \leq y \& y \leq z \Rightarrow x \leq z \quad(x, y, z \in X)$
\&
connectivity of \leq in X
$x \neq y \Rightarrow x \leq y \vee y \leq x \quad(x, y \in X)$
GG34-45
wiet
- \geq is a reflexive antisymmetric transitive connected relation in X
ie
- these properties hold:
reflexivity of \geq in X
$x \geq x \quad(x \in X)$
\&
antisymmetry of \geq in X
$x \geq y \& y \geq x \Rightarrow x=y \quad(x, y \in X)$
\&
transitivity of \geq in X
$x \geq y \& y \geq z \Rightarrow x \geq z \quad(x, y, z \in X)$
\&
connectivity of \geq in X
$x \neq y \Rightarrow x \geq y \vee y \geq x \quad(x, y \in X)$

GG34-46

wiet

- < is an irreflexive transitive connected relation in X
ie
- these proprties hold:
irreflexivity of $<$ in X
$x \nless x \quad(x \in X)$
\&
transitivity of $<$ in X
$x<y \& y<z \Rightarrow x<z \quad(x, y, z \in X)$
\&
connectivity of $<$ in X
$x \neq y \Rightarrow x<y \vee y<x \quad(x, y \in X)$

GG34-47

wiet

- $>$ is an irreflexive transitive connected relation in X
ie
- these proprties hold:
irreflexivity of $>$ in X
$x \ngtr x \quad(x \in X)$
\&
transitivity of $>$ in X
$x>y \& y>z \Rightarrow x>z \quad(x, y, z \in X)$
\&
connectivity of $>$ in X
$x \neq y \Rightarrow x>y \vee y>x \quad(x, y \in X)$

GG34-48
C. the mention of reflexivity \& irreflexivity in the preceding definition is logically correct but unnecessary
since the component relations of a wedge have these properties automatically; however, the following considerations show that the inclusion is desirable for an easier overview of the basic notions

GG34-49
D. the following definitions
are essentially equivalent:
$X \in$ set
\Rightarrow

- a total order in X
$={ }_{\mathrm{df}}$ a reflexive antisymmetric transitive connected relation in X
where the notation \leq or \geq is used for this relation \&
- a total order in X
$={ }_{\mathrm{df}}$ an irreflexive transitive connected relation in X
where the notation $<$ or $>$ is used for this relation
D. the following definition is essentially equivalent to the preceding definition of toset as a wedged set of a certain kind:
- a totally ordered set
$={ }_{d f}$ a set X equipped with a total order in X
GG34-50
T. laws of duality
- the dual of a poset is a poset
- the dual of a toset is a toset
C. a finite poset may often be visualized as a display of small circles in the plane that represent the elements of the poset and in which two circles are connected by a line segment (thought of as rising) if the lower is strictly less than the upper and there is no element strictly inbetween; one element is strictly less than another iff there is a rising path from one to the other; in this pictorialization
to dualize a poset = to pass to its dual is then to turn the display upside down; often a good geometric image of a toset is a piece of a straight line, horizontal or vertical; the following Geometric Pictures make these ideas more concrete

GP. visualization of a finite poset

GG34-52

GP. a toset may be visualized as all of or a part of a directed horizontal line
or
a directed vertical line
whose points are the elements of the toset

GG34-53

- a toset X visualized as all or part of a directed horizontal line
like the x - axis in a customarily drawn rectangular coordinate system where the specified positive direction of the x -axis is from left to right

GG34-54

- a toset X visualized as all or part of a directed vertical line
like the y - axis in a customarily drawn rectangular coordinate system
where the specified positive direction of the y - axis is from below to above

GG34-55
C. these last two pictures help account for the order-theoretic terminology from the horizntal POV
as
left, right; preceding, succeeding; etc
\&
from the vertical POV
as
lower, upper; below, above; etc

GG34-56
N. synonyms

- order (noun)
$=$ ordering
- total order
$=$ simple order
= linear order
= order
- totally ordered set
$=$ simply ordered set
= linearly ordered set
$=$ ordered set
- less / lesser = smaller
- greater $=$ larger
- least $=$ smallest
- greatest $=$ largest

GG34-57
C. i in or out?
let A be an interval or a ray of a wedged set; then

- an endpoint of A is or is not an element of A according as it is
' at a closed end' or
' at an open end' of A
- an interior point of A is always an element of A
- an exterior point of A is never an element of A if X is a poset

GG34-58
C. the nature of endpoints:
it may occur that
an endpoint of an interval or ray
is not uniquely determined by
the interval or ray as a set;
in which case the endpoint
is to be regarded as a ' formal' object
ie
an object specified by
the formal expression that names the set
and not
an object specified by
the set that the formal expression names

GG34-59

N . the notation for intervals and rays may often be streamlined
by dropping the sign for the wedged set;
this may occur when no ambiguity is introduced;
however,
when an open interval is considered
the new notation becomes
the same as that for an ordered pair;
caution must be observed in letting
the context determine the meaning;
thus for a wedged set X with $\mathrm{a}, \mathrm{b} \in \mathrm{X}$;
$X[a, b]=[a, b]$
$X(a, b)=(a, b)$
$X[a, b)=[a, b)$
$\mathrm{X}(\mathrm{a}, \mathrm{b}]=(\mathrm{a}, \mathrm{b}]$
$X[a, \rightarrow)=[a, \rightarrow)$
$\mathrm{X}(\mathrm{a}, \rightarrow)=(\mathrm{a}, \rightarrow)$
$\mathrm{X}(\leftarrow, \mathrm{a}]=(\leftarrow, \mathrm{a}]$
$X(\leftarrow, a)=(\leftarrow, a)$

GG34-60
R. the little lattice of intervals of a wedged set

lattice inclusion $=$ set inclusion meet $=$ intersection join $=$ union
$[\mathrm{a}, \mathrm{b}]=[\mathrm{a}, \mathrm{b}) \cup(\mathrm{a}, \mathrm{b}]$
$(\mathrm{a}, \mathrm{b})=[\mathrm{a}, \mathrm{b}) \cap(\mathrm{a}, \mathrm{b}]$

GG34-61
R. every interval is the intersection of two rays viz
$\mathrm{a}, \mathrm{b} \in$ wedged set \Rightarrow
$[\mathrm{a}, \mathrm{b}]=[\mathrm{a}, \rightarrow) \cap(\leftarrow, \mathrm{b}]$
$(\mathrm{a}, \mathrm{b})=(\mathrm{a}, \rightarrow) \cap(\leftarrow, \mathrm{b})$
$[\mathrm{a}, \mathrm{b})=[\mathrm{a}, \rightarrow) \cap(\leftarrow, \mathrm{b})$
$(\mathrm{a}, \mathrm{b}]=(\mathrm{a}, \rightarrow) \cap(\leftarrow, \mathrm{b}]$
diagrammatically

$$
\begin{aligned}
& \text { [a,b] } \\
& \text { || } \\
& {[a, \rightarrow)} \\
& \cap \quad(\leftarrow, \mathrm{b}] \\
& {[\mathrm{a}, \mathrm{~b})=\underset{(\leftarrow, \mathrm{b})}{\cap} \quad \cap} \\
& \text { (a, b) }
\end{aligned}
$$

rays intersect in intervals

GG34-62
R. intersection \& union of rays with the same endpoint: $\mathrm{a} \in \operatorname{toset} \mathrm{X} \Rightarrow$
$(\leftarrow, \mathrm{a}] \cap[\mathrm{a}, \rightarrow)=\{\mathrm{a}\}$
$(\leftarrow, \mathrm{a}] \cap(\mathrm{a}, \rightarrow)=\varnothing$
$(\leftarrow, \mathrm{a}) \cap[\mathrm{a}, \rightarrow)=\varnothing$
$(\leftarrow, \mathrm{a}) \cap(\mathrm{a}, \rightarrow)=\varnothing$
$(\leftarrow, \mathrm{a}] \cup[\mathrm{a}, \rightarrow)=\mathrm{X}$
$(\leftarrow, \mathrm{a}] \cup(\mathrm{a}, \rightarrow)=\mathrm{X}$
$(\leftarrow, \mathrm{a}) \cup[\mathrm{a}, \rightarrow)=\mathrm{X}$
$(\leftarrow, \mathrm{a}) \cup(\mathrm{a}, \rightarrow)=\mathrm{X}-\{\mathrm{a}\}$
R. decompositions of a toset into intervals \& rays:
$\mathrm{a}, \mathrm{b} \in$ toset X with $\mathrm{a} \leq \mathrm{b} \Rightarrow$
X
$=(\leftarrow, a) \dot{\cup}[a, b] \dot{\cup}(b, \rightarrow)$
$=(\leftarrow, \mathrm{a}] \dot{\cup}(\mathrm{a}, \mathrm{b}) \dot{\cup}[\mathrm{b}, \rightarrow)$
$=(\leftarrow, a) \dot{\cup}[a, b) \dot{\cup}[b, \rightarrow)$
$=(\leftarrow, \mathrm{a}] \dot{\cup}(\mathrm{a}, \mathrm{b}] \dot{\cup}(\mathrm{b}, \rightarrow)$
$=(\leftarrow, \mathrm{a}] \dot{\cup}(\mathrm{a}, \rightarrow)$
$=(\leftarrow, \mathrm{a}) \cup[\mathrm{a}, \rightarrow)$
D. the closed / open unit intervals

- the closed unit interval
$=$ the unit interval
$={ }_{\mathrm{dn}}$ I]
$={ }_{\text {rd }}$ (cap open) eye
$={ }_{\mathrm{df}}$ 㺼 $[0,1]$
$=\{x \mid x \in$ real $n r \& 0 \leq x \leq 1\}$
- the open unit interval
$={ }_{\mathrm{dn}} \stackrel{\mathrm{O}}{\square}$
$=_{\text {rd }}$ (cap open) eye (overscript / over) oh
$={ }_{\mathrm{df}}$ 周 $(0,1)$
$=\{x \mid x \in$ real $n r \& 0<x<1\}$
note: the small circle in $\stackrel{0}{\square}$
is the interior operator

N. paraphrases

- wedge of X
$=$ wedge for X
$=$ wedge in X
- interval of X
$=$ interval in X
- ray of X
$=$ ray in X
- admissible order of X
$=$ admissible order for X
$=$ admissible order in X
- comparable to
= comparable with

GG34-66

GP. geometric pictures of intervals \& rays at an exhibition of the real line

- the following diagrams illustrate the eight kinds of intervals \& rays
in the real number set 路
with its natural total order
by appealing to its geometric analog, the straight line; both the ' horizontal' \& 'vertical' interpretations are given
r is below a real number variable
－the closed interval of R
from a to b
wh $\mathrm{a}, \mathrm{b} \in$ 忍 $\mathrm{st} \mathrm{a}<\mathrm{b}$
$=\{\mathrm{r} \mid \mathrm{r} \in$ 㯰 $\& \mathrm{a} \leq \mathrm{r} \leq \mathrm{b}\}$
$=$ 解 $[\mathrm{a}, \mathrm{b}]$
\＆
$\mathrm{r} \in \mathrm{R}[\mathrm{a}, \mathrm{b}] \Leftrightarrow \mathrm{r} \in$ 思 $\& \mathrm{a} \leq \mathrm{r} \leq \mathrm{b}$

pictured horizontally

GG34-69
pictured vertically

GG34-70
－the open interval of 忍 from a to b
wh $\mathrm{a}, \mathrm{b} \in$ 思 $\mathrm{st} \mathrm{a}<\mathrm{b}$
$=\{\mathrm{r} \mid \mathrm{r} \in$ 㯰 $\& \mathrm{a}<\mathrm{r}<\mathrm{b}\}$
$=$ 觡 (a, b)
\＆
$\mathrm{r} \in$ 思 $(\mathrm{a}, \mathrm{b}) \Leftrightarrow \mathrm{r} \in$ 思 $\& \mathrm{a}<\mathrm{r}<\mathrm{b}$

GG34－71

pictured horizontally

$$
\text { 思 }(a, b)
$$

GG34-72
pictured vertically

GG34-73
－the left－closed right－open interval of \mathbb{R} from a to b
wh $\mathrm{a}, \mathrm{b} \in$ 思 $\mathrm{st} \mathrm{a}<\mathrm{b}$
$=\{r \mid r \in$ 圆 $\& a \leq r<b\}$
$=$ 解 $[\mathrm{a}, \mathrm{b})$
\＆
$r \in R[a, b) \Leftrightarrow r \in$ 思 $\& a \leq r<b$

GG34－74

pictured horizontally

GG34-75
pictured vertically

GG34-76
－the left－open right－closed interval of 㺼 from a to b
wh $\mathrm{a}, \mathrm{b} \in$ 邑 $\mathrm{st} \mathrm{a}<\mathrm{b}$
$=\{r \mid r \in$ 忍 $\& a<r \leq b\}$
$=$ 圆 $(\mathrm{a}, \mathrm{b}]$
\＆
$\mathrm{r} \in$ 恩 $(\mathrm{a}, \mathrm{b}] \Leftrightarrow \mathrm{r} \in$ 圆 $\& \mathrm{a}<\mathrm{r} \leq \mathrm{b}$

pictured horizontally

没

GG34-78
pictured vertically

回

GG34-79
－the closed right ray of 忍 from a
wh $\mathrm{a} \in$ 鳃
$=\{r \mid r \in$ 邑 $\& a \leq r\}$
$=$ 思 $[\mathrm{a}, \rightarrow)$
\＆
$r \in \Omega[a, \rightarrow) \Leftrightarrow r \in$ 回 $\& a \leq r$

pictured horizontally

$\Omega[a, \rightarrow)$

R

GG34-81
pictured vertically

思

GG34-82
－the open right ray of ${ }^{\Omega}$ from a
wh $\mathrm{a} \in$ 慁
$=\{r \mid r \in R \& a<r\}$
$=$ 㘣 $(\mathrm{a}, \rightarrow)$
\＆
$r \in$ 思 $(a, \rightarrow) \Leftrightarrow r \in$ 思 $\& a<r$

pictured horizontally

pictured vertically

思

GG34-85

- the closed left ray of 㺼 from a
wh $\mathrm{a} \in \mathbb{R}^{8}$
$=\{r \mid r \in R \& r \leq a\}$
$=\mathfrak{R}(\leftarrow, \mathrm{a}]$
\&
$\mathrm{r} \in \mathrm{R}(\leftarrow, \mathrm{a}] \Leftrightarrow \mathrm{r} \in \mathrm{R} \& \mathrm{r} \leq \mathrm{a}$

pictured horizontally

GG34-87
pictured vertically

GG34-88

- the open left ray of R from a
wh $\mathrm{a} \in \mathrm{R}$
$=\{r \mid r \in R \& r<a\}$
$=\mathfrak{R}(\leftarrow, \mathrm{a})$
\&
$\mathrm{r} \in \mathbb{R}(\leftarrow, \mathrm{a}) \Leftrightarrow \mathrm{r} \in \mathbb{R} \& \mathrm{r}<\mathrm{a}$

GG34-89

pictured horizontally

$$
\mathfrak{R}(\leftarrow, a)
$$

回

GG34-90
pictured vertically

㵋

GG34-91

\square order-theoretic notions

- toset
- element of toset \qquad
- element a is strictly less than element b.
- element a is strictly greater than element b.
- intervals \qquad
- rays \qquad
- endpoints
- inpoints
- expoints \qquad
- boundary \qquad

GG34-92
\square geometric/topological notions

- (subset of) straight line
- point of line
- point a is to the left of point b ; point a is below point b
- point a is to the right of point b ; point a is above point b
- segments
- half-lines
- boundary points
- interior points
- exterior points
- boundary

N . the following order notions for posets are defined in order-dual pairs
two order-dual statements are numbered
(n) and (n^{\prime})
where n is a postive integer
a self-dual statement is numbered
($\mathrm{n}=\mathrm{n}^{\prime}$)
where n is a postive integer

N . it is often the case that a symbol for a math object is made up by choosing
all or some of the initial letters of the words in its name
D. bounds
let

- $\mathrm{X} \in$ poset $\& \mathrm{E} \subset \mathrm{X}$
then
(1) a lower bound of E in X
$=_{\mathrm{df}}$ an element a of X st
$\mathrm{a} \leq \mathrm{x} \quad(\forall \mathrm{x} \in \mathrm{E})$
(1') an upper bound of E in X
$=_{\mathrm{df}}$ an element a of X st
$\mathrm{a} \geq \mathrm{x} \quad(\forall \mathrm{x} \in \mathrm{E})$
(2) the lower - bound set of E in X
$=_{\mathrm{dn}} \mathrm{lbs} \mathrm{E}$ wh lbs $=_{\mathrm{rd}}$ lobs
$=_{d f}$ the set of all lower bounds of E in X
(2') the upper - bound set of E in X
$=_{\text {dn }}$ ubsE wh ubs $=_{\text {rd }}$ ubs
$=_{d f}$ the set of all upper bounds of E in X
GG34-95
(3) E is bounded (from) below in X
$=\mathrm{E}$ is bounded on the left in X
$=\mathrm{E}$ is left bounded in X
${ }^{\text {df }}$ there exists a lower bound of E in X
$\Leftrightarrow E$ has a lower bound in X
$\Leftrightarrow \mathrm{lbsE} \neq \varnothing$
(3' E is bounded (from) above in X
$=\mathrm{E}$ is bounded on the right in X
$=\mathrm{E}$ is right bounded in X
$=_{\mathrm{df}}$ there exists an upper bound of E in X
$\Leftrightarrow \mathrm{E}$ has an upper bound in X
\Leftrightarrow ubs $\mathrm{E} \neq \varnothing$

GG34-96
$\left(4=4^{\prime}\right)$ E is unilaterally bounded in X
$=_{\mathrm{df}} \mathrm{E}$ is bounded below in X
or
E is bounded above in X
$\left(5=5^{\prime}\right) \mathrm{E}$ is (bilaterally) bounded in X
$=_{\mathrm{df}} \mathrm{E}$ is bounded below in X and

E is bounded above in X

GG34-97
(6) E is unbounded (from) below in X
$=E$ is unbounded on the left in X
$=\mathrm{E}$ is left unbounded in X
$={ }_{\mathrm{df}} \mathrm{E}$ is not bounded below in X
(6') E is unbounded (from) above in X
$=\mathrm{E}$ is unbounded on the right in X
$=\mathrm{E}$ is right unbounded in X
$={ }_{\mathrm{df}} \mathrm{E}$ is not bounded above in X
$\left(7=7^{\prime}\right) \mathrm{E}$ is unbounded in X
$={ }_{\mathrm{df}} \mathrm{E}$ is unbounded below in X or

E is unbounded above in X perhaps both
$\left(8=8^{\prime}\right) \mathrm{E}$ is unilaterally unbounded in X
$={ }_{\mathrm{df}}$ E is unbounded below in X
or
E is unbounded above in X but not both
$\left(9=9^{\prime}\right) \mathrm{E}$ is bilaterally unbounded in X
$={ }_{\mathrm{df}}$ E is unbounded below in X and

E is unbounded above in X

GG34-99

D. extremes

let

- $\mathrm{X} \in$ poset $\& \mathrm{E} \subset \mathrm{X}$
then
(1) the least element of E
$={ }_{d n}$ lst E wh lst $={ }_{r d}$ least
$={ }_{\mathrm{df}}$ the unique element a of Est
$\mathrm{a} \leq \mathrm{x} \quad(\forall \mathrm{x} \in \mathrm{E})$ iie
$=$ the unique lower bound of E that belongs to E iie
(1') the greatest element of E
$={ }_{\mathrm{dn}}$ grtE wh grt $=_{\mathrm{rd}}$ greatest
$={ }_{\mathrm{df}}$ the unique element a of Est
$a \geq x \quad(\forall x \in E)$ iie
$=$ the unique upper bound of E that belongs to E iie
$\left(2=2^{\prime}\right)$ an extreme (element) of E
$={ }_{d f}$ lstE or grtE iie

GG34-100
(3) the greatest lower bound of E in X
$={ }_{\text {dn }}$ glbE wh glb $=_{\text {rd }}$ glob
$=$ the infimum of E in X
$={ }_{d n} \inf E \quad$ whinf $={ }_{r d} \inf$
$=$ the meet of E in X
$={ }_{\mathrm{dn}} \quad \Lambda \mathrm{E}$ wh $\Lambda={ }_{\mathrm{rd}}$ meet
$={ }_{\mathrm{df}}$ grt lbsE iie
$=$ the greatest of the lower bounds of E iie
(3') the least upper bound of E in X
$={ }_{\mathrm{dn}}$ lubE wh lub $=_{\mathrm{rd}}$ lub
$=$ the supremum of E in X
$=_{d n} \sup E$ wh sup $=_{r d}$ soop
$=$ the join of E in X
$={ }_{d n}$ VE wh V $={ }_{r d}$ join
$={ }_{\mathrm{df}}$ lst ubsE iie
$=$ the least of the upper bounds of E iie

R. characterization of

least \& greatest
let
$\cdot \mathrm{X} \in$ poset $\& a \in \mathrm{X} \& \mathrm{E} \subset \mathrm{X}$
then
(1) $\exists \mathrm{lst} \mathrm{E}=\mathrm{a}$
\Leftrightarrow
$a \in E \& \forall x \in E . a \leq x$
(1') $\exists \mathrm{grt} \mathrm{E}=\mathrm{a}$
\Leftrightarrow
$a \in E \& \forall x \in E . a \geq x$

GG34-102
R. characterization of greatest lower bound \& least upper bound let

- $X \in$ poset $\& a \in X \& E \subset X$
then
(1) $\exists \mathrm{glbE}=\mathrm{a}$
\Leftrightarrow
$\forall x \in X . a \geq x \Leftrightarrow(\forall y \in E . x \leq y)$
(1') \exists lub $\mathrm{E}=\mathrm{a}$
\Leftrightarrow
$\forall \mathrm{x} \in \mathrm{X} . \mathrm{a} \leq \mathrm{x} \Leftrightarrow(\forall \mathrm{y} \in \mathrm{E} . \mathrm{x} \geq \mathrm{y})$

GG34-103

D. extrema

let

- $\mathrm{X} \in$ poset $\& \mathrm{E} \subset \mathrm{X}$
then
(1) a minimal element of E
$=$ a minimum (element) of E
$={ }_{d f}$ an element a of Est
$\neg \exists \mathrm{x} \in \mathrm{E} . \mathrm{x}<\mathrm{a}$ iie
ie no element of E is strictly less than a iie
(1') a maximal element of E
$=$ a maximum (element) of E
$={ }_{d f}$ an element a of Est
$\neg \exists \mathrm{x} \in \mathrm{E} . \mathrm{x}>\mathrm{a}$ iie
ie no element of E is strictly greater than a iie
$\left(2=2^{\prime}\right)$ an extremal element of E
$=$ an extremum (element) of E
$=_{\mathrm{df}}$ a minimal element of E or a maximal element of E

GG34-104

D. extrema for tosets

let

- $\mathrm{X} \in$ toset
- $\mathrm{E} \in$ nonempty finite subset of X
then
(1) the minimal element of E
$=$ the minimum (element) of E
$={ }_{\mathrm{dn}} \min \mathrm{E} \quad$ wh $\min =_{\mathrm{rd}} \min$
$={ }_{\mathrm{df}}$ lst E
which necessarily exists uniquely
(1') the maximal element of E
$=$ the maximum (element) of E
$={ }_{d n} \max E$ wh max $=_{r d} \max$
$={ }_{\mathrm{df}} \operatorname{grt} \mathrm{E}$
which necessarily exists uniquely

GG34-105
N. notation for the order types of some tosets; lowercase Greek letters are traditionally used ort $=_{d f}$ order type (of)
$\omega=$ ort $\mathbb{N}=$ ort \mathbb{P}
$* \omega=\operatorname{ort}(-\mathbb{N})=\operatorname{ort}(-\mathbb{P})$
$\pi=$ ort Z
$\eta=\operatorname{ort} @=\operatorname{ort} @(0,1)$
$\vartheta=\operatorname{ort} \mathbb{I}=\operatorname{ort}[0,1]$
$\lambda=\operatorname{ort}{ }^{\circ}=\operatorname{ort}(0,1)=\operatorname{ort}$ 思
also positive integers for nonempty finite tosets; addition \& multiplication of order types are definable; a calculus of order types may be developed

GG34-106
D. well ordered sets
(1) a well ordered set
$={ }_{a b}$ woset
$={ }_{\mathrm{df}}$ a poset or toset X st
every nonempty subset of X
has a least element
$=\mathrm{a}$ toset st
$\leq /<$ is left - founded
$=\mathrm{a}$ toset st
$\geq />$ is right - founded
(1') an inversely well ordered set
$={ }_{\mathrm{df}}$ iwoset
$={ }_{d f}$ a poset or toset X st
every nonempty subset of X
has a greatest element
$=\mathrm{a}$ toset st
$\leq /<$ is right - founded
$=\mathrm{a}$ toset st
$\geq />$ is left - founded
(2) a well ordering of a set X
$={ }_{\text {df }}$ a partial or total order of X that makes X a woset
$=$ a left - founded total order of X
(2') an inverse well ordering of a set X
$={ }_{\mathrm{df}}$ a partial or total order of X
that makes X an iwoset
$=\mathrm{a}$ right - founded total order of X

D. ordinal numbers

- the historical definition: an ordinal number
$={ }_{\mathrm{df}}$ the order type of a well ordered set
- a more modern definition:
an ordinal number
$={ }_{\mathrm{df}}$ a woset X st
$a \in X \Rightarrow X(\leftarrow, a)=a ;$ the well ordering is the elementhood relation \in
\& also equivalently the subset relation \subset
- ordinal number
$={ }_{a b}$ ordinal

GG34-109

C. the von Neumann construction of ordinals

- an ordinal $=$ the set of all smaller ordinals
where the order relation is
the elementhood relation \in or equivalently the subset relation \subset
- thus
$0=\varnothing$
$1=\{0\}$
$2=\{0,1\}$
$3=\{0,1,2\}$
etc
$\omega=\{0,1,2, \cdots\}$
$\omega+1=\{0,1,2, \cdots, \omega\}$
$\omega+2=\{0,1,2, \cdots, \omega, \omega+1\}$
$\omega+3=\{0,1,2, \cdots, \omega, \omega+1, \omega+2\}$
etc

GG34-110

D. cardinal numbers

- $\operatorname{Ord}=_{\text {df }}$ the class of all ordinals well ordered by \in and by \subset
- $\alpha, \beta \in \operatorname{var}$ Ord
- let ~ denote
the reflexive symmetric transitive relation
$=$ the equivalence relation in Ord
st
$\alpha \sim \beta$ iff there exists a one - to - one map of α onto β
- a cardinal number
$={ }_{\mathrm{df}}$ the least ordinal
in an equivalence class of Ord modulo \sim
- cardinal number
$={ }_{a b}$ cardinal
GG34-111
\square tabular form for the four inequalities

inequality	\rightarrow	lohi
\downarrow	hilo	
weak	\leq	\geq
strict	$<$	$>$

\square tabular form for the four negated inequalities

$$
\geq
$$

strict
K
\ngtr
\square mnemonics

- the strict inequality signs
<
and
>
are suggestive of the musical signs

and

for crescendo and diminuendo; thus
soft < loud
and
loud $>$ soft
thinking of
bigger numbers as noisier numbers \&
smaller numbers as quieter numbers

GG34-113

- think of > as a reducing machine
which shrinks a larger number on the left to a smaller number on the right; think of <
as an enlarging machine which expands a smaller number on the left to a larger number on the right

GG34-114
\square the less/greater terminology has many variants eg

- below/above
- inferior/superior
- infra/supra
- left/right
- littler/bigger
- lower/higher
- lower/upper
- minorant/majorant
- minorize/majorize

GG34-115

- precede/succeed
- predecessor/successor
- smaller/larger
- subordinate/dominant
- subordinate/dominate
- under/over
- underestimate/overestimate
etc

GG34-116

