Math Snippets: Third Bouquet
 \#30 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG30-1 (32)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited
\square Euler's constant

- definition of Euler's constant γ
$\gamma={ }_{d f} \lim _{n \rightarrow \infty}\left(H_{n}-\log n\right) \quad$ we
wh
$\mathrm{n} \in$ pos int var
\&
H_{n}
= the nth harmonic number
= the nth partial sum of the harmonic series
$=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$
note that the existence of Euler's constant says that the harmonic series behaves like the logarithm function \& its value tells the discrepancy
the value of Euler's constant to ten decimal places is

$$
\gamma=0.5772156649+
$$

GG30-3

- integral expressions for Euler' s constant γ

$$
\begin{aligned}
& \gamma=-\int_{0}^{1} \log |\log \mathrm{x}| \mathrm{dx} \\
& \gamma=-\int_{0}^{\infty} \frac{\log \mathrm{x}}{\mathrm{e}^{\mathrm{x}}} \mathrm{dx}
\end{aligned}
$$

- Euler' s constant γ ito of the zeta function
$\gamma=\lim _{x \rightarrow 1+}\left[\zeta(x)-\frac{1}{x-1}\right]$
wh
$\mathrm{x} \in$ real var
$\zeta(\mathrm{z})$ is a meromorphic function whose only pole is
a simple pole with residue 1 at $\mathrm{z}=1$;
$\zeta(z)-\frac{1}{z-1}$ is an entire function
whose value at $\mathrm{z}=1$ is γ
GG30-4
\square Euler's
excellent \& famous
elegant \& fabulous
enchanting \& fantastic
exciting \& fascinating
prime-producing polynomial
=
Euler's forty-one formula
is
the monic quadratic polynomial
with positive integer coefficients
- $\mathrm{n}^{2}+\mathrm{n}+41 \quad(\mathrm{n} \in$ int var $)$
which gives
40 distinct primes
for the 40 consecutive integer values of n
from $\mathrm{n}=0$ to $\mathrm{n}=39$
viz
41, 43, 47, 53, 61,
71, 83, 97, 113, 131,
151, 173, 197, 223, 251,
281, 313, 347, 383, 421,
461, 503, 547, 593, 641,
691, 743, 797, 853, 911,
971, 1033. 1097, 1163, 1231,
1301, 1373, 1447, 1523, 1601
\&
which repeats these 40 primes
from $n=-1$ to $n=-40$;
when $n=40$ \& again when $n=-41$,
the value of the polynomial is the square 1681of 41
- the quadratic polynomial
$36 n^{2}-810 n+2753$
gives 45 prime numbers
for the 45 consecutive integer values of n from $\mathrm{n}=0$ to $\mathrm{n}=44$
- bioline

Leonhard Euler
1707-1783
Swiss, lived many years in Germany \& Russia algebraist, analyst, geometer, number theorist, probabilist, applied mathematician, calculating prodigy; most prolific mathematician of all time
\square mathematics \& a touch of mysticism
Δ ouroboros
= oo-ROB-uh-russ
= a dragon/serpent/snake biting/swallowing its own tail from
ovpo (Greek)
= tail
$+$ ßopos (Greek)
= devouring
Δ the ouroboros
is usually represented
in the shape of a circle O
but it may occur in the shape of an infinity sign ∞
Δ the ouroboros
is an ancient world-wide mystical symbol
with many meanings
\&
with strangely mathematical overtones
eg
the ouroboros symbolizes
GG30-8

- constant rejuvenation
- the continuity of life
- cyclic time
= die ewige Wiederkunft (German; Nietzsche)
= le retour éternel (French)
= eternal recurrence
= eternal reemergence
= eternal return
= the doctrine that the world is periodic
- descent of spirit into matter \& return ascent
- disintegration \& reintegration
$=$ 'my end is my beginning'
- the eternity of time
- immortality
- the infinity of space
- truth \& cognition
- wisdom

GG30-9

- in alchemy:
the passage from solid to liquid to gas
\& the reverse
- Buddhist/Hindu meaning:
the wheel of samsara
- Egyptian meaning:
the circle of the universe;
the path of the sun
- Greek meaning:
` $\varepsilon \nu \tau 0 \pi \alpha \nu$ (Greek)
= lit: the one, the all
$=\mathrm{all}$ is one
\square the political distinction between
a necessary condition and
a sufficient condition
- a necessary condition nominates but does not elect
- a sufficient condition elects

GG30-11
\square ¿ Platonic Ideas/Forms = sets ?

- the Platonic Ideas/Forms
constitute a forerunner of the notion of set
- eg
in 'a chair is a shadow of the Idea of Chair'
'the Idea of Chair'
could be correlated with
'the set of all chairs';
\&
'is a shadow of'
could be correlated with
'is an element of'
- in tabular form

Plato
set theory
a chair a chair
is a shadow of is an element of
the Idea of Chair the set of all chairs

GG30-12
\square Platonism vs nominalism

- Platonic realism
= Platonism
= realism
= the philosophical thesis that abstract objects, such as concepts and mathematical objects, have an independent actual real (whence the name) existence which is equal to, or even superior to, the existence of physical objects; first promulgated by Plato (whence the name); opposed to nominalism
- nominalism
= the philosophical thesis that abstract objects, such as concepts and mathematical objects, do not exist
ie
abstract objects exist in name only
= abstract objects exist only nominally
= abstract objects have only a nominal existence
$=$ the names exist but the objects do not exist
(whence the name 'nominalism');
opposed to Platonic realism

GG30-13
\square an opposing pair of philosophical words

- phenomenon
= fee-NOM-ee-NON
= that which appears to the senses
= our perception of a thing from
polvo $\mu \varepsilon v o v$ (Greek)
= appearance
- noumenon
= NOO-mee-NON
= the thing behind our perception of it
= das Ding an sich (German; Kant)
$=$ lit: the thing in itself
from
vov $\mu \varepsilon v o v$ (Greek)
= that which is perceived
\square physiological aspects of mathematics
- the language of mathematics
is much more
graphic = written/printed/seen
than
auditory = spoken/heard
- it is likely that
seeing \& hearing
mathematical exposition at the same time
(often together with writing)
helps in the learning/understanding process;
but to use the auditory medium alone for the communication of mathematics
ie without graphic accompaniment
requires high expertise
on the part of both speaker \& hearer
- of the five human physiological senses
seeing
hearing
touching
smelling
tasting
it seems that only the first three senses
seeing
hearing
touching
are involved in
the recognition \& expression \& communication
of mathematics
\& in decreasing order of importance;
the last two senses
smelling
tasting
do not seem to be involved at all
- it is likely that
the sense of touch
\&
the proprioceptive perception
of bone/muscle movement
are much involved in the formation \& recognition
of geometric/spacial notions
\&
of algebraic/temporal notions
GG30-16
- instruments of composition
for the use of individuals engaged in the discovery/invention/recording/learning/teaching
of mathematics
have been mainly
the traditional paper-and-pencil/ink kinds for two millenia; but now
the electronic computer/printer has arrived as a new \& powerful composing instrument; this basicly important change means that the actual physiology involved in the production of mathematics will be changing, presumably for the better
\square the two meanings of 'orientation'
Δ there are two mathematical/scientific meanings of the noun 'orientation'
Δ the first/primary/preferred meaning of the word 'orientation'
is related to the words:
- bias
- rotation
- sense
- spin
- turn
- torque
- twirl
- twist
this meaning of 'orientation' is
two-valued as eg
- clockwise vs counterclockwise
- direct image vs mirror image
- forward/forwards vs backward/backwards
- positive vs negative
- right/rightward/rightwards vs left/leftward/leftwards
- right-handed vs left-handed
- this way vs that way
- up/upward/upwards vs down/downward/downwards
- yes vs no
etc
Δ the second/secondary/other meaning
of the word 'orientation'
is to be fully distinguished from the first meaning; this other meaning is suggested by the words:
- attitude
- bearing
- direction
- pose
- position
- posture
- stance
\& generally carries the idea of
- relationship to the environment/surroundings; this meaning of 'orientation' is infinitely multiple-valued eg
the orientation of a rocket ship in space
= the attitude of a rocket ship in space is described say by the three direction angles of the axis of the ship
\& is specified by the values of the direction angles
Δ to summarize suggestively:
- orientation in the first meaning is an internal/intrinsic condition
- orientation in the second meaning
is an external/extrinsic condition
Δ etymology
orientation (English)
from
orientation (French noun) = orientation from
orienter (French verb) = to set toward the east from
orient (French noun) $=$ the east
from
orientem (acc case)
from
oriens (Latin noun, nom case) $=$ the east, the rising sun from
oriens (pres part)
from
orior (Latin verb) $=$ to become visible, to rise from
*or- (Indo-European root) $=$ to raise, to set in motion
\square mathematics $=$ the study of abstract patterns
the study of
$\begin{array}{lll}\text { this kind of } & & \text { this kind of } \\ \text { physical pattern } & \text { produces } & \text { mathematics }\end{array}$
\downarrow
- chance \qquad probability \& statistics
- communication information theory
- counting \qquad number theory \& algebra
- drawing/writing \qquad math notation
- human conflict
game theory
- language \qquad logic
- motion \qquad analysis
\& applied math
GG30-21
- multiplicity
theory of sets
\& combinatorics
- nearness topology
- perspective projective geometry
- pictures geometry
- space
geometry
- symmetry
group theory
- time
theory of order \& analysis
- vibrations/waves theory of Fourier series
- visual/tactile perception geometry

GG30-22
\square polygonal numbers
are the numbers of dots
arranged in polygonal patterns;
the following algebraic definition
is a consequence
D. polygonal numbers
let
$\mathrm{k}, \mathrm{n} \in$ int $\mathrm{st} \mathrm{k} \geq 3$ \& $\mathrm{n} \geq 1$
then
the polygonal number of order $\mathrm{k} \&$ of index n
$=$ the nth k - order polygonal number
$={ }_{\mathrm{dn}} \mathrm{P}(\mathrm{k}, \mathrm{n})$
$={ }_{\mathrm{df}} \frac{\mathrm{n}}{2}[(\mathrm{k}-2) \mathrm{n}-\mathrm{k}+4]$
wh
polygonal of order $3=$ triangular
polygonal of order $4=$ square
polygonal of order $5=$ pentagonal
polygonal of order $6=$ hexagonal
:
polygonal of order $k=k$ - gonal
GG30-23
\square a philosophical/poetical definition of mathematics \& its major branches
mathematics
arises from
the study of

- multiplicity
- space
- time
- motion
where
the study
of this phenomenon
generates
this branch
\downarrow
- multiplicity algebra
- space
geometry/topology
- time analysis
- motion applied mathematics

GG30-24
\square longer periods of time

- second $=\sec =s$
= one adult human heart beat approx
- minute $=$ min $=\mathrm{m}$
$=60$ seconds
- hour = hr = h
$=60$ minutes
- day $=d a=d$
$=24$ hours
from the period of the Earth's rotation

GG30-25

- week = wk = w
$=7$ days
(?) from the time-length of
the four interval phases of the Moon ie waxing crescent, waxing gibbous, waning gibbous, waning crescent which is the same thing as the time-length between
the consecutive phases of the Moon:
new moon, first quarter moon, full moon, last quarter moon
- fortnight
= 2 weeks
(?) from the time-length between
new moon \& full moon
- month = mo
$=28$ to 31 days
from the period of the Moon's revolution about the Earth
- bimester = bim
$=2$ months
- trimester = trim
$=3$ months
- semester = sem
= 15 to 18 weeks
- academic year
= school year
= the ten months period
from September to June inclusive

GG30-27

- year = yr = y
= 12 months
from the period of the Earth's revolution about the Sun
- common year = com yr = cy
$=365$ days
- leap year = lp yr = ly
$=366$ days
- annus
$=1$ year
- biennium
$=2$ years
- triennium
$=3$ years
- quadrennium
$=4$ years
- quinquennium
$=5$ years
- sexennium
$=6$ years
- septennium
$=7$ years
- octennium
$=8$ years
- novennium
$=9$ years

GG30-29

- decade
= decennium
$=10$ years
- undecennium
$=11$ years
- duodecennium
= 12 years
- tredecennium
$=13$ years
- quattuordecennium
= 14 years
- quindecennium
= 15 years
- vicennium
= 20 years
- semicentennium
$=50$ years
- century
= centennium
= 100 years
GG30-30
- sesquicentennium
$=150$ years
- bicentennium
= 200 years
- tricentennium
$=300$ years
- quadricennium
= 400 years
- quincentennium
= 500 years
- sexcentennium
$=600$ years
- septicentennium
$=700$ years
- octocentennium
$=800$ years
- novecentennium
$=900$ years
- millenium
$=1000$ years
- myriad
= 10,000 years
(suggested use)
- lac (Hindi)
= 100,000 years
(suggested use)
- geon (blend of geologic + eon)
$=1,000,000$ years
(a convenient unit of geologic time)
- crore (Hindi)
= 10,000,000 years
(suggested use)
- era
= 100,000,000 years
(suggested use)
- eon
$=1,000,000,000$ years

