Math Snippets: Second Bouquet

\#29 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG29-1 (31)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

\square facts/data/information/knowledge/science

science

GG29-3
D. floor \& ceiling
let
$\mathrm{x} \in$ real nr
then

- the floor of x
$={ }_{d n}\lfloor x\rfloor$
$=_{r d}$ floor (of) x
$=_{\mathrm{df}}$ the greatest integer n st $\mathrm{n} \leq \mathrm{x}$
wh
the two - part sign $\lfloor\cdots\rfloor$
$=_{\mathrm{cl}}$ the floor sign $=$ the el brackets
- the ceiling of x
$={ }_{d n}\lceil\mathrm{x}\rceil$
$={ }_{r d}$ ceiling (of) x
$={ }_{\mathrm{df}}$ the least integer n st $\mathrm{x} \leq \mathrm{n}$
wh
the two - part sign $\lceil\cdots\rceil$
$=_{\mathrm{cl}}$ the ceiling sign $=$ the gamma brackets GG29-4
\square the cosmic scheme of the four elements from long ago

modern science relates in the four states of matter:
earth = solid
water $=$ liquid
air = gas
fire = plasma;
Plato said the regular dodecahedron of the five regular solids corresponds to the Universe
\square Gabriel's Horn: the painter's paradox
- consider
the unbounded region R with area A
under the equilateral hyperbola $y=1 / x$
\&
above the x-axis from $x=1$ to $x=+\infty$;
revolve the region R about the x -axis to obtain an unbounded solid (call it 'Gabriel's Horn')
with volume V \& surface area S ;
then it follows that
A is infinite
and
S is infinite
but
V is finite!
- thus in this case
it takes an infinite amount of paint to cover a solid with finite volume
- Gabriel's Horn can be filled up but cannot be painted
\square a general guide to point the way
$=$ a rough rule of thumb:
analysis via geometric/physical insight/intuition
- 'integrate a little piece to find the whole thing'
- to find a geometric/physical quantity, determine its differential = 'element of quantity'
\& then integrate; in symbols

$$
\mathrm{Q}=\int \mathrm{dQ}
$$

and in words
'quantity equals integral of element of quantity'

- this dictum
is to be regarded as
a shorthand suggestion for
a more complicated limit process in any given instance
\square the mathematical gospel according to Saint Hardy
Δ Hardy says that a mathematician is
'a maker of patterns of ideas'
Δ Hardy's five components of mathematical beauty are:
- generality
- depth
- unexpectedness
- inevitability
- economy
where their initial-letter mnemonic is GUIDE
Δ Hardy's 'pure-talent score' of mathematicians included the valuations:
- Hardy $=25$
- Littlewood = 30
- Hilbert $=80$
- Ramanujan = 100
Δ bioline
Godfrey Harold Hardy
1877-1947
English
analyst, number theorist;
cricket aficionado,
first established mathematician
to recognize the genius of Ramanujan
GG29-8
- Hilbert's Hotel
$=\mathrm{a}$ hotel which has aleph-null rooms
to accommodate aleph-null guests
\& therefore
no one will ever be turned away
because they lack a reservation
even tho the hotel may be full
\square historical numbers
remember numerical approximations
by correlating them with historical events
\& giving them associated names;
here are some examples
- the Columbus number
$=$ the square root of 2
$=\sqrt{2}$
$=1.4142+$
because Columbus discovered America in 1492
\&
$4+1+4=9$
besides the evident other correspondences
- the first presidential number
= the George Washington number
$=$ the square root of 3
$=\sqrt{3}$
$=1.732+$
because George Washington, the first president of the United States, was born in the year 1732
- the seventh presidential number
= the Andrew Jackson number
= the natlogbase
= e
$=2.718281828459045+$
because Andrew Jackson was the 7th president of the United States, he served 2 terms, and he was first elected in 1828; that accounts for the integer \& for the first nine decimal places in e; the last six decimal places given above are the angles in degrees
of the three angles
of an isosceles right triangle
\square the first way
is
the hardest way
- it often happens that
once a theorem has been proved, proofs much easier and more insightful than the first are found
- it sometimes happens that the first 'proof' of a theorem
is actually invalid
because
for example
it depends on notions that were not yet clearly defined and developed at the moment the 'proof' was offered;
in such a case
the pioneer mathematician
is ahead of their time;
insight/intuition leads the way,
rigor follows

GG29-12
\square notation for infinite numbers

- cardinal numbers
${ }^{\text {ab }}$ cardinals
$\aleph_{0}=$ the least infinite cardinal $=$ ' aleph $/$ alef null'
$\left(\aleph_{\alpha} \mid \alpha \in \mathrm{Ord}\right)=$ the ladder of infinite cardinals
$\mathrm{c}=$ the cardinal of the continuum $=$ ' little cee'
$\mathrm{Crd}=$ the class of all cardinals
- ordinal numbers
$=_{a b}$ ordinals
$\omega=$ the least infinite ordinal $=$ 'little omega'
$\left(\omega_{\alpha} \mid \alpha \in \mathrm{Ord}\right)=$ the ladder of infinite initial ordinals
$\Omega=$ the least uncountable ordinal $=$ ' big omega'
Ord = the class of all ordinals
\square mathematics
\&
mathematics exposition
to simplify
\&
to unify
mathematics
continually
requires mathematicians
to simplify
\&
to unify
mathematics exposition continually

GG29-14
\square a geometric/kinematic insight into the nature of a curve

- a smooth curve may be considered to be the path which is simultaneously
traced by a moving point
\&
enveloped by a moving line where the point is on the line
- the curve is produced by action of the point-line pair, the point being on the curve
\&
the line being tangent to the curve at the point
- the point moves continuously on the curve \&
the line moves continuously about the point
- the line moves continuously touching the curve \& the point moves continuously on the line
- the motion of the point determines the motion of the line \&
the motion of the line determines the motion of the point
- the position of the point determines the position of the line \& the position of the line determines the position of the point
- the tangent line to the curve at any given point of the curve
is the linear = first-degree approximation to the curve in the neighborhood of the given point \&
the tangent line is a one-dimensional
linear space = vector space
in its own right
with origin at the given point
\square a geometric/kinematic insight into the nature of a surface
- a smooth surface may be considered to be the spread which is simultaneously
traced by a moving point
\&
enveloped by a moving plane
where
the point is on the plane
- the surface is produced by action of the point-plane pair, the point being on the surface
\&
the plane being tangent to the surface at the point
- the point moves continuously on the surface
\&
the plane moves continuously about the point
- the plane moves continuously touching the surface
\&
the point moves continuously on the plane
- the motion of the point determines the motion of the plane \& the motion of the plane determines the motion of the point
- the position of the point determines the position of the plane \& the position of the plane determines the position of the point
- the tangent plane to the surface at any given point of the surface
is the linear = first-degree approximation to the surface
in the neighborhood of the given point
\&
the tangent plane is a two-dimensional
linear space = vector space
in its own right
with origin at the given point
\square the shortest known proof of the Pythagorean theorem
- the altitude to the hypotenuse of a right triangle divides the triangle into two smaller triangles similar to the original triangle; the sum of the areas of the two smaller triangles equals the area of the original triangle;
the areas of all three triangles
are proportional to
the squares of their hypotenuses
with the same constant of proportionality
because the triangles are similar;
substitute in the equation
and divide by the constant
- this proof is a good example of
a proof that makes the theorem obvious
(once you see the proof, of course)
- this proof is a good example of
a mathematical gestalt:
an immediate clear comprehensive structured unified image of a significant amount of mathematics
- this is perhaps
the most insightful proof known of the Pythagorean theorem
\& it's all in words
GG29-19
\square a quick mental calculation
- 2^{20}
$=\left(2^{10}\right)^{2}$
$=(1024)^{2}$
$=(1000+24)^{2}$
$=1000^{2}+2 \times 1000 \times 24+24^{2}$
$=1000000$
+48 000
+576
= 1048576
\square mathematics vs computer science
- what theorems are to mathematics, algorithms are to computer science
- the above statement may be paraphrased in the form of
a semantic proportion
= an equality of ratios of notions
viz
theorems : mathematics = algorithms : computer science
read
theorems are to mathematics
as
algorithms are to computer science

GG29-21
\square a maximum maxim
for mathematics
algebraic formulas
and
geometric forms
merge to make
magnificent mathematics

GG29-22
\square natural language vs formal language

- treat a natural language such as English
as a rigorous logical instrument
ie
as a formal language/system
\&
as a result you can get
an inference such as this one:
science is knowledge
and
knowledge is power
and
power corrupts;
therefore
science corrupts
¿ what happened?
altho a natural language
has a lot of correct logic
built into it,
yet the individual words
and the grammar
are so ambiguous
that logical errors are inevitable

GG29-23
\square the Nature/Mathematics cycle

Nature
Mathematics

GG29-24
\square some notable sets of integers

- the positive integers
= \mathbb{P}
- the even positive integers
$=2 \mathrm{P}$
- the odd positive integers
$=2 \mathbb{P}-1$
- the nonnegative integers
$=\mathbb{N}$
- the even nonnegative integers
$=2 \mathbb{N}$
- the odd nonnegative integers
= the odd positive integers
$=2 \mathbb{N}+1=2 \mathbb{P}-1$
- the negative integers
$=-\mathfrak{P}$
- the even negative integers
$=-2 \mathrm{P}$
- the odd negative integers
$=-2 \mathfrak{Q}+1$
- the nonpositive integers
$=-\mathbb{N}$
- the even nonpositive integers
$=-2 \mathbb{N}$
- the odd nonpositive integers
$=$ the odd negative integers
$=-2 \mathbb{N}-1=-2 \mathbb{P}+1$
- the integers
$=Z$
- the even integers
$=2 Z$
- the odd integers
$=2 z+1$

GG29-27

- the n -multiples ($\mathrm{n} \in \mathrm{int}$)
$=$ the additive group of n - multiples
$=n 马$
- the n - multiples plus k ($\mathrm{n}, \mathrm{k} \in \mathrm{int}$)
$=$ the equivalence class of integers modulo n that contains $k(n \in \operatorname{pos}$ int)
$=\mathrm{n} Z+\mathrm{k}$
- the additive group of all equivalence classes of integers modulo $n(n \in \operatorname{pos}$ int)
$=$ the additive group of integers mod n
= Z/nZ
$={ }_{d n} \mathbb{Z}_{n}$
\square extremely special sets
Δ the largest of all sets under consideration at the moment iie
$={ }_{\mathrm{cl}}$ the universal set
$=$ the universe of discourse (in an older terminology)
= the domain of individuals (in a newer terminology)
$=$ the space
$={ }_{d n} \mathrm{~V}$
$=_{\text {rd }}$ (cap) vee
[where the letter V may be thought of as
an ancient / stylized capital letter yu for the initial letter of the word 'universe']
$={ }_{\mathrm{dn}} \$$
$={ }_{\mathrm{rd}}$ (crossed cap) ess
[where the letter S is the capitalized initial letter of the word 'space'; note that
ess S is to crossed ess $\$$
as oh O is to crossed oh \varnothing]

GG29-29
Δ the smallest of all sets
$={ }_{c l}$ the empty / null / vacuous / void set
$={ }_{\mathrm{dn}} \Lambda$
$=_{\text {rd }}$ (cap) lambda
[where the letter Λ is
the capital Greek letter lambda
which is the capitalized initial letter of the Greek noun $\lambda \alpha \kappa \kappa о \varsigma=$ gap, hole, pit, void \& also an inverted V]
$={ }_{\mathrm{dn}} \varnothing$
$={ }_{r d}$ (crossed) oh
[where the letter crossed oh \varnothing
comes from the letter oh O which is like the numeral zero 0 which is the number of the elements of the empty set \varnothing;
the symbol \varnothing
is a Scandinavian (Danish \& Norwegian) vowel letter
\&
also a vowel symbol of the International Phonetic Alphabet with sound as in
French feu $=$ fire $\&$ German schön $=$ beautiful; there is no equivalent sound in English]
Δ note the duality:
(1) tfsape

- $\mathrm{A}=\varnothing$
- $\mathrm{A}=\Lambda$
- A is empty
- A is the empty set
- for no $x, x \in A$
- for all $x, x \notin \mathrm{~A}$
(2) tfsape
- $\mathrm{A}=\$$
- $\mathrm{A}=\mathrm{V}$
- A is spacial
- A is the space
- for all $x, x \in A$
- for no $\mathrm{x}, \mathrm{x} \notin \mathrm{A}$
Δ the extreme sets
$={ }_{\mathrm{df}}$ the two sets
$\varnothing=\Lambda \& S=V$

