Trig Patterns

\#21 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG21-1 (39)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG21-2

\square trig patterns

in diagrams
\&
in words:
they help
in understanding
\&
in remembering

GG21-3
Δ the definitions of the six trig fcns of an acute angle of a right triangle
hyp = hypotenuse adj = adjacent side opp = opposite side

- $\sin \mathrm{A}=\frac{\text { opp }}{\text { hyp }}$
- $\cos A=\frac{\operatorname{adj}}{\text { hyp }}$
- $\tan \mathrm{A}=\frac{\mathrm{opp}}{\text { adj }}$
- $\cot \mathrm{A}=\frac{\operatorname{adj}}{\mathrm{opp}}$
- $\sec A=\frac{\text { hyp }}{\operatorname{adj}}$
- $\csc \mathrm{A}=\frac{\text { hyp }}{\text { opp }}$
Δ this trig mnemonic is a pronounceable manufactured 'word' for the definitions of the sine, cosine, tangent of an acute angle of a right triangle

The Great Trig Chief

- SOHCAHTOA
says
$\sin =o p p / h y p$
$\cos =$ adj/hyp
$\tan =$ opp/adj

GG21-5

Δ fcn of angle $=$ cofcn of complement

- $\mathrm{A}+\mathrm{B}=90^{\circ}=\frac{\pi^{\mathrm{r}}}{2}$
- $\sin A=\frac{a}{c}=\cos B$
- $\cos A=\frac{b}{c}=\sin B$
- $\tan \mathrm{A}=\frac{\mathrm{a}}{\mathrm{b}}=\cot \mathrm{B}$
- $\cot A=\frac{b}{a}=\tan B$
- $\sec \mathrm{A}=\frac{\mathrm{c}}{\mathrm{b}}=\csc \mathrm{B}$
- $\csc A=\frac{c}{a}=\sec B$
Δ the three pythagorean identities are easily deducible from the pythagorean theorem as follows:

1st PID

- $\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}=1$

GG21-7

2nd PID

- $1+\tan ^{2} \mathrm{~A}=\sec ^{2} \mathrm{~A}$

- $1+\cot ^{2} \mathrm{~A}=\csc ^{2} \mathrm{~A}$
Δ the trig hex

- level corners are cofunctions; unco- fcns on left; co- fcns on right
- opposite corners are reciprocal functions
- any corner
= the product of the two adjacent corners
- any corner
= the quotient of either adjacent corner divided by the remote corner in the same direction
- the product of any two nonadjacent corners is the middle function (using 1 for opposite corners)
- alternate pairs of adjacent corners
beginning with the top pair
are connected by a pythagorean identity;
think of three pointing-down triangles
with vertices at
$\sin A, \cos A, 1$
\&
$\tan A, 1, \sec A$
\&
1, $\cot A, \csc A ;$
in each triangle
the sum of the squares of the top vertices
equals the square of the bottom vertex

GG21-11
Δ the six trig fcns of the three special angles
$30^{\circ}=\frac{\pi^{r}}{6}$
$45^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{4}$
$60^{\circ}=\frac{\pi^{r}}{3}$
are readily computed by
starting with
a square whose sides = 1
\&
an equilateral triangle whose sides $=2$
and then
splitting them in half
viz
splitting the square
with a diagonal
\&
splitting the triangle
with an altitude

GG21-12

- in more detail:
to find the trig fcn values of 45°, draw a diagonal of a square with sides of length 1 \& look at one of the triangles formed viz

GG21-13

- in more detail:
to find the trig fcn values of $30^{\circ} \& 60^{\circ}$, draw an altitude of an equilateral triangle with sides of length 2 \& look at one of the triangles formed viz

GG21-14

- to find the trig fcn values of 45°, visualize the $45^{\circ}-45^{\circ}-90^{\circ}$ triangle with opposite sides $1,1, \sqrt{2}$

and read off the fcns
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
$\tan 45^{\circ}=1$
$\cot 45^{\circ}=1$
$\sec 45^{\circ}=\sqrt{2}$
$\csc 45^{\circ}=\sqrt{2}$
- to find the trig fcn values of $30^{\circ} \& 60^{\circ}$, visualize the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle with opposite sides $1, \sqrt{3}, 2$

and read off the fcns
$\sin 30^{\circ}=\frac{1}{2}=\cos 60^{\circ}$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=\sin 60^{\circ}$
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}=\cot 60^{\circ}$
$\cot 30^{\circ}=\sqrt{3}=\tan 60^{\circ}$
$\sec 30^{\circ}=\frac{2}{\sqrt{3}}=\csc 60^{\circ}$
$\csc 30^{\circ}=2=\sec 60^{\circ}$
Δ pretty patterns of squares of values of trig fens of special angles
$\begin{array}{llllll}A^{o} & 0 & 30 & 45 & 60 & 90\end{array}$
$\sin ^{2} \mathrm{~A} \quad \frac{0}{4} \quad \frac{1}{4} \quad \frac{2}{4} \quad \frac{3}{4} \quad \frac{4}{4}$
$\cos ^{2} \mathrm{~A} \quad \frac{4}{4} \quad \frac{3}{4} \quad \frac{2}{4} \quad \frac{1}{4} \quad \frac{0}{4}$
$\tan ^{2} \mathrm{~A} \quad \frac{0}{4} \quad \frac{1}{3} \quad \frac{2}{2} \quad \frac{3}{1} \quad \frac{4}{0}$
$\cot ^{2} \mathrm{~A} \quad \frac{4}{0} \quad \frac{3}{1} \quad \frac{2}{2} \quad \frac{1}{3} \quad \frac{0}{4}$
$\sec ^{2} \mathrm{~A} \quad \frac{4}{4} \quad \frac{4}{3} \quad \frac{4}{2} \quad \frac{4}{1} \quad \frac{4}{0}$
$\csc ^{2} \mathrm{~A} \quad \frac{4}{0} \quad \frac{4}{1} \quad \frac{4}{2} \quad \frac{4}{3} \quad \frac{4}{4}$
many trig identities are recognizable in the preceding table
eg
- rows reverse for cofens
viz
$\sin \& \cos$
$\tan \& \cot$
$\sec \& \csc$
- fractions invert for reciprocal functions
viz
$\sin \& \csc$
$\tan \& \cot$
$\sec \& \csc$
- the three pythagorean identities appear
- for secant square \& cosecant square, their sum equals their product

GG21-18
note: the four 'fractions' in which
zero occurs in the denominator
are to be viewed formally
ie as expressions without meaning
since
division by zero is undefined and sensibly undefinable
if division by zero
is defined in any manner,
then the usual laws of operations with numbers
would fail to be valid;
consequently,
any laws governing the arithmetic operations
would have to exclude divison by zero;
the net effect is that division by zero is 'defined'
but then can never be used which means that
a sensible definition of division by zero does not exist; here are a few examples to illustrate this argument

$$
\frac{\mathrm{ax}}{\mathrm{a}}=\mathrm{x} \text { holds for } \mathrm{a} \neq 0 \text { but fails when } \mathrm{a}=0
$$

$a \mathrm{x}=\mathrm{ay} \Rightarrow \mathrm{x}=\mathrm{y}$ holds for $\mathrm{a} \neq 0$ but fails when $\mathrm{a}=0$
$\frac{a}{b}=c \Leftrightarrow a=b c$ holds for $b \neq 0$ but fails when $b=0$
GG21-19

Δ cofunctions \& reciprocal functions

Δ parity of trig fcns

GG21-21

Δ periodicity of trig fens

GG21-22

Δ segment lengths

 associated with a unit circle as trig fens

GG 21-23

$$
\begin{aligned}
& \overline{\mathrm{OP}}=\overline{\mathrm{OD}}=\overline{\mathrm{OF}}=1 \\
& \mathrm{OD} \perp \mathrm{OF} \\
& \mathrm{PM} \perp \mathrm{OD} \& \mathrm{PN} \perp \mathrm{OF} \\
& \mathrm{DE} \perp \mathrm{OD} \& \mathrm{FG} \perp \mathrm{OF} \\
& \overline{\mathrm{MP}}=\overline{\mathrm{ON}}=\sin \mathrm{A}=\cos \mathrm{B} \\
& \overline{\mathrm{NP}}=\overline{\mathrm{OM}}=\cos \mathrm{A}=\sin \mathrm{B} \\
& \overline{\mathrm{DE}} \quad \\
& =\tan \mathrm{A}=\cot \mathrm{B} \\
& \overline{\mathrm{FG}} \quad \\
& \overline{\mathrm{OE}} \quad \\
& \overline{\mathrm{OE}} \mathrm{~A}=\tan \mathrm{B} \\
& \overline{\mathrm{OG}} \quad \\
& =\sec \mathrm{A}=\csc \mathrm{B} \\
& \mathrm{Cl}=\sec \mathrm{B}
\end{aligned}
$$

Δ to be looked at
\& then
visualized

GG 21-25
Δ it is of the utmost importance in understanding math to be able to see with the mind's eye,
to visualize;
here is an example;
just think as you read and do not write anything down

- think of coordinate axes, the x -axis horizontal and pointing to the right, the y-axis vertical and pointing upward, the axes intersecting at the origin O
- a rotary angle A
of any size and any sign
is placed in standard position
with the vertex at the origin O , with the initial side along the positive x-axis, and
with the terminal side falling somewhere in some quadrant

GG21-26

- choose any point P on the terminal side
- let the coordinates of P be
$x=$ abs for abscissa and $y=$ ord for ordinate and think $P(x, y)$
- let $r=$ rad be the radial distance of P
ie
$r=\operatorname{rad}$ is the distance $\overline{\mathrm{OP}}$ from the origin O to the point P
- we are now in a position to define the six basic trig functions of the rotary angle A viz

$$
\begin{aligned}
& \sin \mathrm{A}=\frac{\mathrm{ord}}{\operatorname{rad}}=\frac{\mathrm{y}}{\mathrm{r}} \\
& \cos \mathrm{~A}=\frac{\mathrm{abs}}{\operatorname{rad}}=\frac{\mathrm{x}}{\mathrm{r}} \\
& \tan \mathrm{~A}=\frac{\mathrm{ord}}{\mathrm{abs}}=\frac{\mathrm{y}}{\mathrm{x}} \\
& \cot \mathrm{~A}=\frac{\mathrm{abs}}{\mathrm{ord}}=\frac{\mathrm{x}}{\mathrm{y}} \\
& \sec \mathrm{~A}=\frac{\operatorname{rad}}{\mathrm{abs}}=\frac{\mathrm{r}}{\mathrm{x}} \\
& \csc \mathrm{~A}=\frac{\operatorname{rad}}{\operatorname{ord}}=\frac{\mathrm{r}}{\mathrm{y}}
\end{aligned}
$$

- to associate
a right triangle and
an acute angle with the rotary angle A, draw a perpendicular from the point P on the terminal side to the x -axis at the point M ;
there is formed a right triangle OMP with right angle at M ;
the right triangle OMP
is called the residual right triangle and its acute angle POM
with vertex at the origin O
is called the residual angle α
of the rotary angle A; the six basic trig functions of A are equal numerically to the same six basic trig functions of α;
in the residual right triangle OMP
the horizontal leg $\overline{\mathrm{OM}}=|\mathrm{x}|$
the vertical leg $\quad \overline{\mathrm{MP}}=|\mathrm{y}|$
the hypotenuse $\quad \overline{\mathrm{OP}}=\mathrm{r}$
and
by the pythagorean theorem
$r^{2}=x^{2}+y^{2}$
\&
$r=\sqrt{x^{2}+y^{2}}$
note: quadrantal angles offer simpler diagrams \& equations
Δ signs of trig fens by quadrant
- positivity of trig fcns by quadrant

as a mnemonic
note that the initial letters of
cos, all, sin, tan
spell the word
CAST
- signs of

$$
\sin \mathrm{A}=\frac{\mathrm{y}}{\mathrm{r}} \& \csc \mathrm{~A}=\frac{\mathrm{r}}{\mathrm{y}}
$$

- signs of
$\cos \mathrm{A}=\frac{\mathrm{x}}{\mathrm{r}} \& \sec \mathrm{~A}=\frac{\mathrm{r}}{\mathrm{x}}$

GG21-33

- signs of
$\tan \mathrm{A}=\frac{\mathrm{x}}{\mathrm{y}} \& \cot \mathrm{~A}=\frac{\mathrm{y}}{\mathrm{x}}$

GG21-34
Δ on quadrantal angles
a quadrantal rotary / sectorial angle
$=_{\mathrm{df}}$ a rotary / sectorial angle
whose measure is an integral multiple
of $90^{\circ}=\frac{\pi^{r}}{2}$
the four nonzero quadrantal sectorial angles
in name, abbreviation, measure, and diagram are

- right angle $=\mathrm{rt} \angle=90^{\circ}=\frac{\pi^{\mathrm{r}}}{2}$

- straight angle $=\operatorname{str} \angle=180^{\circ}=\pi^{\mathrm{r}}$

GG21-36

- reflex - right angle $=\operatorname{rrt} \angle=270^{\circ}=\frac{3 \pi^{\mathrm{r}}}{2}$

- round angle $=$ rnd $\angle=360^{\circ}=2 \pi^{r}$

Δ the interesting etymology of the word 'sine'
- the etymology of 'sine' traces
a line of development of trigonometry:
from India in the Sanskrit language
to Middle Age Arabic-speaking Arabia, from Arabian Baghdad to Arabian Spain, meeting scholarly Latin in Spain, transmitted in Latin to western Europe, and entering English
and the other modern European languages
- the English word 'sine' comes from the Latin word 'sinus'; the Latin word 'sinus' = 'sine' was first used in its modern trig sense ca 1150 by

Gerard of Cremona
1114-1187
Italian, worked in Spain
translator from Arabic to Latin of many scholarly manuscripts

- in India ca 510

Aryabhata
ca 476 - ca 550
Indian
mathematician, astronomer
used the Sanskrit word 'jya-ardha' meaning 'chord-half' (our sine essentially)
and then abbreviated it to
jya = jiva = chord = bowstring;
this word with its math meaning was adopted into Arabic as the meaningless word 'jiba'
which has the same sound as
the Sanskrit word 'jya = jiva';
the word 'jiba' was written as 'jb'
since written Arabic omits vowels
and relies only on consonants;
later Arabic writers used 'jaib' also written as 'jb' in place of 'jiba';
now 'jaib' is meaningful and means
bay, bosom, breast,
the hanging fold of a toga about the breast,
the bosom of a garment;
the Latin word 'sinus' means many things such as bay, bending, bosom, breast, curve, gulf, hollow and it also means 'garment-fold' as does the Arabic 'jaib';
thus 'jaib' and 'sinus' have much in common;
Gerard chose 'sinus' as the translation of 'jb',
and our word 'sine' came to be

