Roman Numerals

\#19 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG19-1 (17)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906 permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG19-2
\square the Roman system of numeration is a summation-by-juxtaposition numeration system; it consists of an additive/subtractive notation for positive integers as described below
Δ the seven basic Roman numerals are the following capital/lowercase Latin/English letters with values as indicated
in the Indo-Arabic system of numeration which is a positional decimal numeration system:

Ii = 1
$\mathrm{Vv}=5$
$\mathrm{Xx}=10$
$\mathrm{L} 1=50$
$\mathrm{Cc}=100$
$\mathrm{Dd}=500$
$\mathrm{Mm}=1000$

GG19-3
Δ the seven basic Roman numerals represent the first four nonnegative integer powers of ten viz
$\mathrm{I}=10^{0}=1$
$X=10^{1}=10$
$C=10^{2}=100$
$\mathrm{M}=10^{3}=1000$
\&
their integer halves viz
$V=5$
$\mathrm{L}=50$
$\mathrm{D}=500$

GG19-4
Δ the Roman system of numeration uses
the decreasing-additive increasing-subtractive principles of notation
applied to the seven basic Roman numerals
to denote any positive integer
by a finite sequence,
written in juxtaposition form, of the seven basic Roman numerals, altho not uniquely

- in particular
$\mathrm{P}, \mathrm{Q}, \mathrm{R}, \cdots \in \mathrm{BRN}$
\Rightarrow by def
$P Q=P+Q$ if $P \geq Q$
$P Q=Q-P$ if $P<Q$
$P Q R=P+Q+R$ if $P \geq Q \geq R$
$P Q R S=P+Q+R+S$ if $P \geq Q \geq R \geq S$
etc

GG19-5

Δ hence

$$
\begin{array}{lll}
\mathrm{I}=\mathrm{I} & =1 & =1 \\
\mathrm{II}=\mathrm{I}+\mathrm{I} & =1+1 & =2 \\
\mathrm{III}=\mathrm{I}+\mathrm{I}+\mathrm{I} & =1+1+1 & =3 \\
\mathrm{IV}=\mathrm{V}-\mathrm{I} & =5-1 & =4 \\
\mathrm{~V}=\mathrm{V} & =5 & =5 \\
\mathrm{VI}=\mathrm{V}+\mathrm{I} & =5+1 & =6 \\
\mathrm{VII}=\mathrm{V}+\mathrm{I}+\mathrm{I} & =5+1+1 & =7 \\
\mathrm{VIII}=\mathrm{V}+\mathrm{I}+\mathrm{I}+\mathrm{I}=5+1+1+1 & =8 \\
\mathrm{IX}=\mathrm{X}-\mathrm{I} & =10-1 & =9
\end{array}
$$

GG19-6

$$
\begin{array}{lll}
\mathrm{X}=\mathrm{X} & =10 & =10 \\
\mathrm{XX}=\mathrm{X}+\mathrm{X} & =10+10 & =20 \\
\mathrm{XXX}=\mathrm{X}+\mathrm{X}+\mathrm{X} & =10+10+10 & =30 \\
\mathrm{XL}=\mathrm{L}-\mathrm{X} & =50-10 & =40 \\
\mathrm{~L} & =\mathrm{L} & =50 \\
\mathrm{LX}=\mathrm{L}+\mathrm{X} & =50+10 & =50 \\
\mathrm{LXX}=\mathrm{L}+\mathrm{X}+\mathrm{X} & =50+10+10 & =70 \\
\mathrm{LXXX}=\mathrm{L}+\mathrm{X}+\mathrm{X}+\mathrm{X} & =50+10+10+10 & =80 \\
\mathrm{XC} & =\mathrm{C}-\mathrm{X} & =100-10
\end{array}
$$

$$
\begin{aligned}
& \mathrm{C}=\mathrm{C}=100 \quad=100 \\
& \mathrm{CC}=\mathrm{C}+\mathrm{C}=100+100=200 \\
& \mathrm{CCC}=\mathrm{C}+\mathrm{C}+\mathrm{C}=100+100+100=300 \\
& \text { CD }=\mathrm{D}-\mathrm{C} \\
& =500-100 \\
& =400 \\
& \mathrm{D}=\mathrm{D}=500 \\
& =500 \\
& \mathrm{DC}=\mathrm{D}+\mathrm{C}=500+100=600 \\
& \mathrm{DCC}=\mathrm{D}+\mathrm{C}+\mathrm{C}=500+100+100=700 \\
& \mathrm{DCCC}=\mathrm{D}+\mathrm{C}+\mathrm{C}+\mathrm{C}=500+100+100+100=800 \\
& C M=M-C \\
& =1000-100 \\
& =900
\end{aligned}
$$

$\mathrm{M}=1000$
$\mathrm{MM}=1000+1000=2000$
$\mathrm{MMM}=1000+1000+1000=3000$
MMMM $=1000+1000+1000+1000=4000$
etc

GG19-9
Δ more particularly for numbers (= positive integers) less than 5000 say

- to convert
from Indo-Arabic numerals
to Roman numerals:
write the given number as a sum of multiples of decreasing powers of ten up to one thousand
\& convert each summand to Roman numerals
\& juxtapose in the given order
eg
3456
$=3000+400+50+6$
$=\mathrm{MMM}+\mathrm{CD}+\mathrm{L}+\mathrm{VI}$
$=\mathrm{MMMCDLVI}$
- to convert
from Roman numerals
to Indo-Arabic numerals:
parenthesize each consecutive letter pair PQ with $\mathrm{P}<\mathrm{Q}$
\& then add together the values of all
parenthesized letter pairs
and
unparenthesized individual letters
eg
MCDLIV
$=\mathrm{M}(\mathrm{CD}) \mathrm{L}(\mathrm{IV})$
$=1000+400+50+4$
$=1454$
GG19-10

```
\(\Delta\) some examples of notable dates expressed in Roman numerals
\(476=\) CDLXXVI
\(1000=M\)
1001 = MI
\(1066=\) MLXVI
\(1492=\mathrm{MCDXCII}\)
\(1564=\) MDLXIV
\(1616=\mathrm{MDCXVI}\)
\(1642=\) MDCXLII
1687 = MDCLXXXVII
1727 = MLCCXXVII
\(1776=\mathrm{MDCCLXXVI}\)
1861 = MDCCCLXI
\(1918=\) MCMXVIII
\(2000=\mathrm{MM}\)
2001 = MMI
```

GG19-11
Δ the overbar is used on Roman numerals to denote multiplication by 1000 eg
$\overline{\mathrm{VI}}=6000$
Δ the square cap of three unconnected strokes is used on Roman numerals
to denote multiplication by 100,000
eg
$|\overline{\mathrm{VI}}|=600,000$
Δ to illustrate:
123,456, 789
$=|\overline{\text { MCCXXXIV }}| \overline{\text { LVI }}$ DCCLXXXIX
Δ Roman numerals are distinctive \& beautiful \& dignified
$\&$ grace many occasions
$\&$ are sometimes useful
as in
classification headings, nouns with numbers attached
(eg acts of plays, names of royalty, etc), ceremonial records of notable dates, and the like;
BUT Roman numerals are cumbersome
\& appropriate for
calculation/arithmetic/mathematics they are not;
the simple examples

- $\mathrm{CXXXIV} \times$ XXVIII $=$ MMMDXXLII

$$
134 \times 28=3752
$$

- $\frac{\text { III }}{\mathrm{IV}}+\frac{\text { VIII }}{\mathrm{IX}}=\frac{\text { LIX }}{\mathrm{XXXVI}}=\mathrm{I} \& \frac{\text { XXIII }}{\mathrm{XXXVI}}$

$$
\frac{3}{4}+\frac{8}{9}=\frac{59}{36}=1 \frac{23}{36}
$$

are sufficiently discouraging
GG19-13
Δ the seven basic Roman numerals are letters now but they were not so originally; their earlier forms evolved into letters apparently with no special reference to the particular letters they became except for shape
\& the reinforcement accompanying three letters viz

I = suggestive of the original vertical tally mark
$\mathrm{C}=$ the capitalized initial letter of the Latin word 'centum' meaning 'hundred'
$\mathrm{M}=$ the capitalized initial letter of the Latin word 'mille' meaning 'thousand'

GG19-14
Δ it has been suggested
that the Roman numeral V for five
was originally adopted because
it represents the human hand
with four fingers together
and the thumb outstretched,
making a total of five fingers;
it has also been suggested
that the Roman numeral X for ten
was originally adopted because
it represents the two human arms crossed,
making a total of ten fingers;
another suggestion about the origin of X for ten
is that it is two V's, one upside down,
stuck together;
these are pleasant thoughts but it is hard to see
how historical evidence can be attained
Δ Roman numerals were used
in the Roman Republic and later the Roman Empire
from its beginning ca 500 BCE
and continued to be used thruout Europe until
the Indo-Arabic numeration system
began to be widely known and used
in Europe ca 1275 say;
however the replacement was gradual
and Roman numerals were well used into the 1500 's

GG19-15
Δ the ancient Romans used other signs for various numbers; for example, the lazy eight sign ∞ (or something similar)
was also used by them to denote 1000; in 1655 the sign ∞
was used to denote infinity by
John Wallis
1616-1703
English
mathematician, physicist, logician, historian of mathematics, calculating prodigy, cryptanalyst, grammarian, theologian, royal chaplain (to King Charles II), linguist, teacher of deaf \& dumb

GG19-16
Δ note that
$666=$ DCLXVI
which is the decreasing sequence of the basic Roman numerals except for M
\&
which helps to explain the particular uniqueness of this number as
The Number of the Beast

- Revelation 13:18 KJV

Here is wisdom. Let him that hath understanding count the number of the beast; for it is the number of a man; and his number is Six hundred threescore and six.

GG19-17

