The Sigma Summation Notation

 \#18 of Gottschalk's GestaltsA Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG18-1 (28)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG18-2

N . files

- the file of length $n(n \in \mathbb{P})$
$=$ the n - file
$={ }_{\mathrm{dn}} \underline{\mathrm{n}}$
$={ }_{r d} \mathrm{n}$ file
$={ }_{\mathrm{df}}$ the set of the first n positive integers
$=\{1,2, \cdots, n\}$
$=\mathbb{P}[1, \mathrm{n}]$
- the file of length zero
$=$ the 0 - file
$={ }_{\mathrm{dn}} \underline{0}$
$={ }_{\mathrm{rd}}$ zero file
$={ }_{\mathrm{df}}$ the empty set \varnothing
- thus
$\underline{0}=\varnothing$
$\underline{1}=\{1\}$
$\underline{2}=\{1,2\}$
$\underline{3}=\{1,2,3\}$
etc
GG18-3

N . the basic capital sigma summation notation

- the sum
$a_{1}+a_{2}+\cdots+a_{n}$
$={ }_{r d} a_{1}$ plus a_{2} plus \cdots plus a_{n}
of elements $a_{1}, a_{2}, \cdots, a_{n}(n \in \mathbb{P})$ of an additive semigroup
$=$ the (termwise) sum of the ordered $n-$ tuple $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
$=$ the (termwise) sum of the \underline{n}-family $\left(a_{i} \mid i \in \underline{n}\right)$
$={ }_{d n} \sum\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
$={ }_{r d}$ summation $/$ sum of $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$
$={ }_{d n} \sum\left(\mathrm{a}_{\mathrm{i}} \mid \mathrm{i} \in \underline{\mathrm{n}}\right)$
$={ }_{r d}$ summation $/ \operatorname{sum}$ of $\left(a_{i} \mid i \in \underline{n}\right)$
$={ }_{\mathrm{dn}} \sum_{\mathrm{i} \in \underline{\mathrm{n}}} \mathrm{a}_{\mathrm{i}}$
$={ }_{r d}$ summation / sum for i in \underline{n} of a_{i}
$={ }_{d n} \sum_{i=1}^{n} a_{i}$
$=_{r d}$ summation / sum from i equals 1 to n of a_{i}
wh $i \in \operatorname{var} \underline{n}$ or at least i is an integer - valued variable that contains \underline{n} in its range

GG18-4

N . in the sigma summation notation
$\sum_{i=1}^{n} a_{i}$
i is a bound $=$ dummy $=$ umbral variable,
i is called ' the summation index (variable)',
the set of values of i used in the summation (viz \underline{n} here) is called ' the summation range',
$\mathrm{a}_{\mathrm{i}}(\mathrm{i} \in \underline{\mathrm{n}})$ is called ' the ith summand' or ' the ith addend' ; the summation index variable is often taken to be i because i is the initial letter of 'index' and of 'integer' ; summation index variables are frequently taken from the alphabetic run $\mathrm{h}, \mathrm{i}, \mathrm{j}, \mathrm{k}$ and other good candidates are $\mathrm{m}, \mathrm{n}, \mathrm{r}$
C. in 1755 Euler introduced capital sigma Σ
to denote continued sums;
the indicial notation was added later by others; the Greek letter sigma $\Sigma \sigma$
corresponds phonetically \& in transliteration to the Latin - English letter ess Ss
wi the initial letter of summa (Latin) $=$ sum GG18-5
N. extended capital sigma summation notation

- $\sum_{i=m}^{n} a_{i}$
$={ }_{r d}$ summation / sum from i equals m to n of a_{i}
$={ }_{d f} a_{m}+a_{m+1}+\cdots+a_{n}$
wh
$\mathrm{m}, \mathrm{n} \in \mathbb{Z}$ st $\mathrm{m} \leq \mathrm{n}$
\&
$\mathrm{i} \in \operatorname{var} \mathbb{Z}[\mathrm{m}, \mathrm{n}]$
or
i is a variable
whose values are integers
and
whose range includes $\mathbb{Z}[m, n]$
\&
$a_{m}, a_{m+1}, \cdots, a_{n}$ are elements of an additive semigroup

GG18-6

- the (termwise) sum of $\left(\mathrm{a}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{I}\right)$
$={ }_{d n} \sum\left(a_{i} \mid i \in I\right)$
$={ }_{r d}$ summation $/$ sum of $\left(a_{i} \mid i \in I\right)$
$={ }_{\mathrm{dn}} \sum_{\mathrm{i} \in \mathrm{I}} \mathrm{a}_{\mathrm{i}}$
$=_{\text {rd }}$ summation / sum for i in I of a_{i}
$={ }_{d f} \sum_{j \in \underline{n}} \mathrm{a}_{\varphi \mathrm{j}}$
wh
$\left(a_{i} \mid i \in I\right)$ is a nonempty finite family
in an additive commutative semigroup
\&
$\mathrm{n}=\mathrm{crd} \mathrm{I}$
\&
$\varphi: \underline{\mathrm{n}} \rightarrow \mathrm{I} \in$ bijection
note: if I is also a totally ordered set, then φ is uniquely definable as an order - isomorphism \&
the commutativity of the semigroup may be dropped GG18-7
- the (elementwise) sum of A
$={ }_{\mathrm{dn}} \sum \mathrm{A}$
$=_{\text {rd }}$ summation / sum of A
$==_{d f} \sum(\mathrm{a} \mid \mathrm{a} \in \mathrm{A})=\sum_{\mathrm{a} \in \mathrm{A}} \mathrm{a}$
wh
A is a nonempty finite subset of an additive commutative semigroup

GG18-8
N. the sigma summation notation for series

- the sum of the right series
$\mathrm{a}_{\mathrm{m}}+\mathrm{a}_{\mathrm{m}+1}+\cdots=\sum_{\mathrm{i}=\mathrm{m}} \mathrm{a}_{\mathrm{i}}$
$={ }_{d n} \sum_{i=m}^{\infty} a_{i}$
$=_{\text {rd }}$ summation / sum from i equals m to infinity of a_{i}
$={ }_{\text {df }} \lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}=\mathrm{m}}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}} \quad(\mathrm{n} \in \operatorname{var} \mathbb{Z}[\mathrm{m}, \rightarrow))$ iie
wh
$\mathrm{m} \in \mathbb{Z}$
\&
$\mathrm{a}_{\mathrm{m}}, \mathrm{a}_{\mathrm{m}+1}, \cdots$
are elements of an additive topological semigroup

GG18-9

- the sum of the left series

$$
\begin{aligned}
& \cdots+a_{n-1}+a_{n}=\sum^{\mathrm{i}=\mathrm{n}} \mathrm{a}_{\mathrm{i}} \\
& ={ }_{\mathrm{dn}} \sum_{-\infty}^{\mathrm{i}=\mathrm{n}} \mathrm{a}_{\mathrm{i}}
\end{aligned}
$$

$={ }_{r d}$ summation $/$ sum from i equals n to minus infinity of a_{i}
$={ }_{\text {df }} \lim _{\mathrm{m} \rightarrow-\infty} \sum_{\mathrm{i}=\mathrm{m}}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}(\mathrm{m} \in \operatorname{var} \mathbb{Z}(\leftarrow, \mathrm{n}])$ iie
wh
$\mathrm{n} \in \mathrm{Z}$
\&
\cdots, a_{n-1}, a_{n}
are elements of an additive topological semigroup

GG18-10

- the sum of the biseries

$$
\begin{aligned}
& \cdots+a_{-1}+a_{0}+a_{1}+\cdots=\sum_{i \in \mathbb{Z}} a_{i} \\
& ={ }_{c n}^{i=\sum_{i=-\infty}^{i=\infty} a_{i}}
\end{aligned}
$$

$=_{\text {rd }}$ summation / sum from i equals minus infinity to i equals (plus) infinity
$=\lim _{\mathrm{df}} \lim _{\substack{\mathrm{n} \rightarrow \infty \\ \mathrm{m} \rightarrow-\infty}} \sum_{\mathrm{i}=\mathrm{m}}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}(\mathrm{m}, \mathrm{n} \in \operatorname{var} \mathbb{Z} \& \mathrm{~m} \leq \mathrm{n})$ iie wh
$\cdots, a_{-1}, a_{0}, a_{1}, \cdots$
are elements of an additive topological semigroup

N . the sigma summation notation
with two or more summation indexes $=$ indices;
here are three examples

- $\sum_{i, j=1}^{n} a_{i j}$
$={ }_{r d}$ summation $/$ sum from i, j equal 1 to n of $a_{i j}$
$=$ a sum of n^{2} summands from a_{11} to $a_{n n}$
- $\sum_{\text {and }}$
$\mathrm{i}, \mathrm{j}, \mathrm{k}=1$
$={ }_{r d}$ summation $/$ sum from i, j, k equal 1 to n of $a_{i j k}$
$=$ a sum of n^{3} summands from a_{111} to $a_{n n n}$
- $\sum_{\substack{i, j=1 \\ i<j}}^{n} a_{i j}$
$={ }_{r d}$ summation / sum from i, j equal 1 with i less than j
to n of a_{ij}
$=a$ sum of ${ }_{n} C_{2}=\frac{1}{2} n(n-1)$ summands from a_{12} to $a_{n-1, n}$
- it is understood that n is a positive integer $\&$ that the $\mathrm{a}^{\prime} \mathrm{s}$ are from an additive commutative semigroup GG18-12

Δ laws for elements $\mathrm{a}_{\mathrm{i}}(\mathrm{i} \in \operatorname{var} \mathbb{P})$ of any additive semigroup

- special range laws

$$
\begin{aligned}
& \sum_{i=1}^{0} a_{i}=\sum_{i \in \varnothing} a_{i}=\sum \varnothing=_{d f} 0 \text { iie } \\
& \sum_{i=1}^{1} a_{i}=a_{1} \\
& \sum_{i=1}^{2} a_{i}=a_{1}+a_{2} \\
& \sum_{i=1}^{3} a_{i}=a_{1}+a_{2}+a_{3} \\
& \text { etc }
\end{aligned}
$$

Δ law for an element a of any additive group

- the right distributive law for multiples
$\left(\sum_{i=1}^{n} \alpha_{i}\right) a=\sum_{i=1}^{n} \alpha_{i} a \quad\left(n \in \mathbb{P} \& \alpha_{i} \in \mathbb{Z}\right.$ for $\left.i \in \underline{n}\right)$

GG18-14
Δ laws for elements $\mathrm{a}_{\mathrm{i}}\left(\mathrm{i} \in \operatorname{var} \mathbb{P}^{\mathrm{P}}\right)$ of any additive commutative group $(\mathrm{n} \in \mathbb{P})$

- the negation law

$$
-\sum_{i=1}^{n} a_{i}=\sum_{i=1}^{n}-a_{i}
$$

- the left distributive law for multiples
$\alpha \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \alpha \mathrm{a}_{\mathrm{i}} \quad(\alpha \in \mathbb{Z})$
Δ laws for elements $\mathrm{a}_{\mathrm{i}}(\mathrm{i}, \mathrm{j} \in \operatorname{var} \mathbb{P})$ of any commutative ring $(\mathrm{n} \in \mathbb{P})$
- the first square - of - sum law

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=\sum_{i=1}^{n} a_{i}^{2}+2 \sum_{\substack{i . j=1 \\ i<j}}^{n} a_{i} a_{j}
$$

- the second square - of - sum law

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(2-n) \sum_{i=1}^{n} a_{i}^{2}+\sum_{\substack{i, j=1 \\ i<j}}^{n}\left(a_{i}+a_{j}\right)^{2}
$$

- the third square - of - sum law

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=n \sum_{i=1}^{n} a_{i}^{2}-\sum_{\substack{i, j=1 \\ i<j}}^{n}\left(a_{i}-a_{j}\right)^{2}
$$

Δ law for elements $\mathrm{a}_{\mathrm{i}}, \mathrm{b}_{\mathrm{i}}(\mathrm{i} \in \operatorname{var} \mathfrak{P})$ of any additive commutative semigroup $(\mathrm{n} \in \mathbb{P})$

- the additive law

$$
\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)=\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} b_{i}
$$

Δ laws for elements $a_{i}, b_{i}(i \in \operatorname{var} 巴)$ of any additive commutative group $(\mathrm{n} \in \mathbb{P})$

- the subtractive law

$$
\sum_{i=1}^{n}\left(a_{i}-b_{i}\right)=\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} b_{i}
$$

- the linear law
$\sum_{i=1}^{n}\left(\alpha a_{i}+\beta b_{i}\right)=\alpha \sum_{i=1}^{n} a_{i}+\beta \sum_{i=1}^{n} b_{i} \quad(\alpha, \beta \in \mathbb{Z})$
Δ the binomial theorem
in any commutative ring ($\mathrm{n} \in \mathbb{P}$)
- first form
$(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i}$
- second form
$(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{n-i} b^{i}$
- third form

$$
(a+b)^{n}=\sum_{\substack{i, j=0 \\ i+j=n}}^{n} \frac{n!}{i!j!} a^{i} b^{j}
$$

note: the third form suggests the trinomial theorem which has three indexes
\& in general
the multinomial theorem which has say $r \geq 2$ indexes
GG18-19
D. the Bernoulli numbers $\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{~B}_{2}, \cdots$ are definable by a generating function
$\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}}-1} \quad(\mathrm{x} \in$ real var $)$
as follows:
$\frac{x}{e^{x}-1}=\sum_{n=0}^{\infty} B_{n} \frac{x^{n}}{n!} \quad($ for x near 0$)$
whence
$\mathrm{B}_{0}=1, \mathrm{~B}_{1}=-\frac{1}{2}, \mathrm{~B}_{2}=\frac{1}{6}, \mathrm{~B}_{3}=0, \mathrm{~B}_{4}=-\frac{1}{30}$
$\mathrm{B}_{5}=0, \mathrm{~B}_{6}=\frac{1}{42}, \mathrm{~B}_{7}=0, \mathrm{~B}_{8}=-\frac{1}{30}, \mathrm{~B}_{9}=0$,
$\mathrm{B}_{10}=\frac{5}{66}, \cdots$
Δ the complex functions
exponential, sine, cosine
are definable as
everywhere - convergent power series
as follows:

$$
\begin{aligned}
& \exp z=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots \quad(\forall z \in \mathbb{C}) \\
& \sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!}=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots \quad(\forall z \in \mathbb{C}) \\
& \cos z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n)!}=1-\frac{z^{2}}{2!}+\frac{z^{4}}{4!}-\frac{z^{6}}{6!}+\cdots \quad(\forall z \in \mathbb{C})
\end{aligned}
$$

Δ an example;
the Laurent series of a complex function that is analytic on the punctured plane and
that has an essential singularity at the origin ($\mathrm{z} \in$ var \mathbb{C})
$\exp z+\exp \frac{1}{z}$
$=\mathrm{e}^{\mathrm{z}}+\mathrm{e}^{\frac{1}{\mathrm{z}}}$
$=1+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots+1+\frac{1}{1!z}+\frac{1}{2!z^{2}}+\frac{1}{3!z^{3}}+\cdots$
$=\cdots+\frac{1}{3!z^{3}}+\frac{1}{2!z^{2}}+\frac{1}{1!z}+2+\frac{z}{1!}+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\cdots$
$=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}+\sum_{n=0}^{\infty} \frac{1}{n!z^{n}}$
$=\sum_{-\infty}^{\mathrm{n}=0} \frac{\mathrm{z}^{\mathrm{n}}}{\mathrm{n}!}+\sum_{\mathrm{n}=0}^{\infty} \frac{\mathrm{z}^{\mathrm{n}}}{\mathrm{n}!}$
$=\sum_{-\infty}^{n=-1} \frac{z^{n}}{|n|!}+2+\sum_{n=1}^{\infty} \frac{z^{n}}{n!}$

GG18-22

N . the capital pi production notation
$\prod_{i=1}^{n} a_{i}=a_{1} a_{2} \cdots a_{n}$
for the product of the elements $a_{1}, a_{2}, \cdots, a_{n}(n \in \mathbb{P})$ of a multiplicative semigroup
is analogous to
the capital sigma summation notation
$\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+\cdots+a_{n}$
for the sum of the elements $a_{1}, a_{2}, \cdots, a_{n}(n \in \mathbb{P})$
of an additive semigroup
eg
the factorial of $n(n \in \mathbb{P})$
$=$ factorial n
$={ }_{\mathrm{dn}} \mathrm{n}$!
$={ }_{\mathrm{rd}} \mathrm{n}$ factorial $=\mathrm{n}$ bang
$={ }_{\mathrm{df}} \prod_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{r}=\prod_{\mathrm{r}=0}^{\mathrm{n}-1}(\mathrm{n}-\mathrm{r})$
$=1 \times 2 \times 3 \times \cdots \times n=n(n-1)(n-2) \cdots 1$
$=$ the product of the first n positive integers
note: just as the sum of the empty set
of additive semigroup elements
is defined to be the additive identity element zero iie ie
$\sum_{i \in \varnothing} a_{i}={ }_{d f} 0$ iie
so analogously the product of the empty set
of multiplicative semigroup elements
is defined to be the multiplicative identity element unity iie ie
$\prod_{i \in \varnothing} a_{i}={ }_{d f} 1$ iie

GG18-24
C. the notation n ! for n factorial was introduced in 1808 by Christian Kramp of Strasbourg, France; in 1812 Gauss introduced capital pi П to denote continued products; the indicial notation was added later by others; the Greek letter pi $\Pi \pi$ corresponds phonetically \& in transliteration to the Latin - English letter pee P p
which is the initial letter of productum (Latin) = product

GG18-25
D. two dual kinds of factorial powers of x where x is an element of a commutatve unital ring $\& n \in \mathfrak{P}$

- the rising nth factorial power of x
$={ }_{d n} x^{\bar{n}}$
$={ }_{r d} \mathrm{x}$ rising n (factorial)
$={ }_{\mathrm{df}} \prod_{\mathrm{r}=0}^{\mathrm{n}-1}(\mathrm{x}+\mathrm{r})$
$=x(x+1)(x+2) \cdots(x+n-1)$ which has exactly n factors
- the falling nth factorial power of x
$={ }_{d n} x^{\underline{n}}$
$={ }_{\mathrm{rd}} \mathrm{x}$ falling n (factorial)
$={ }_{\mathrm{df}} \prod_{\mathrm{r}=0}^{\mathrm{n}-1}(\mathrm{x}-\mathrm{r})$
$=x(x-1)(x-2) \cdots(x-n+1)$ which has exactly n factors
Δ the three binomial formulas / theorems for three kinds of powers in a commutative unital ring $(\mathrm{n} \in \mathbb{P})$
- the binomial formula / theorem for ordinary powers
$(a+b)^{n}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{r}$
- the binomial formula / theorem for rising factorial powers
$(a+b)^{\bar{n}}=\sum_{r=0}^{n}\binom{n}{r} a^{\bar{n}-\mathrm{r}} b^{\bar{r}}$
- the binomial formula / theorem for falling factorial powers

$$
(a+b)^{\underline{n}}=\sum_{r=0}^{n}\binom{n}{r} a^{n-r} b^{\underline{r}}
$$

Δ three examples of infinite products

- $\prod_{\mathrm{n}=2}^{\infty}\left(1-\frac{1}{\mathrm{n}^{2}}\right)=\frac{1}{2}$
- $\prod_{\mathrm{n}=1}^{\infty}\left(1-\frac{1}{(2 \mathrm{n})^{2}}\right)=\frac{2}{\pi}$
- $\prod_{n=1}^{\infty}\left(1-\frac{1}{(2 n+1)^{2}}\right)=\frac{\pi}{4}$
note: the first product
is the product of
the second product and the third product

GG18-28

