Angles on Angles
\#16 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2001

GG16-1 (51)
© 2001 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG16-2
\square the notion of plane angle
Δ we recognize three kinds of plane angles:
sectorial angles
rotary angles
radial angles

- plane angle as infinite circular sector
= plane angle as sector
= plane angle as sectorial angle
= sectorial plane angle
= sectorial angle
- plane angle as rotation of a ray about its vertex
= plane angle as rotation
= plane angle as rotary angle
= rotary plane angle
= rotary angle
- plane angle as union of rays in the plane with a common vertex
= plane angle as ray-union
= plane angle as radial angle
= radial plane angle
= radial angle
Δ the notion of radial angle generalizes the notion of sectorial angle; a sectorial angle is a special kind of radial angle; radial angles that are not sectorial angles are not ordinarily encountered until after calculus level math courses; but it is the notion of radial angle that extends easily to higher dimensions and in particular to solid (= three-dimensional) angles
Δ as with all geometric objects a basic question arises as to how to measure the magnitude of these various kinds of angle
\square pictures of sectorial \& rotary angles
- to draw a picture of a sectorial angle draw the sides from the vertex and draw a circle arc centered at the vertex that lies between the sides and within the angle; to indicate another sectorial angle on the same diagram draw two such circle arcs close together or mark a circle arc with a short tick (crosspiece) in the middle of the arc; increase numbers of arcs and of ticks on arcs to indicate more sectorial angles
- to identify a right sectorial angle by sight complete a small square in the corner
- to draw a picture of a rotary angle draw the sides from the vertex and draw an expanding/contracting counterclockwise/clockwise pointed spiraling arc from the initial side to the terminal side to indicate the direction and the numerical value of the rotation

GG16-5
\square visualizing a radial angle

- here is a way of thinking of a radial angle;
a radial angle is determined by
a point in the plane, called the vertex V , and
any nonempty set in the plane, called the directrix D ;
take the union A of all rays (= half-lines) from V passing thru a point in D ;
the set A is a radial angle;
it is said that
the directrix D subtends the angle A
from the vertex V
and
the angle A is subtended by the directrix D from the vertex V ;
if D lies on the unit circle centered at V , then the numerical 'length' of D
is taken to be the measure in radians
of the radial angle A

GG16-6
\square the notion of spacial angle
Δ we recognize two kinds of spacial angles: dihedral angles
solid angles

- a dihedral angle, visualized as two pages in a book with both pages stationary or one page stationary and the other turning,
can be thought of
as extending the two notions of
sectorial plane angle
and
rotary plane angle
to spacial angles;
a perpendicular plane section of a dihedral angle produces
one of these two kinds of plane angle
whose measure is taken to be
the measure of the dihedral angle

GG16-7

- a solid angle
is defined to be
a union of rays in space
with a common vertex;
a solid angle is a ray-union;
a solid angle is a kind of radial (= made up of rays) angle and indeed extends the notion of radial plane angle to spacial angles
- a sectorial dihedral angle
is a special kind of a solid angle
but the measure
of the plane section of the dihedral angle differs from the measure as solid angle

GG16-8
\square visualizing a solid angle

- here is a way of thinking of a solid angle;
a solid angle is determined by
a point in space, called the vertex V , and
any nonempty set in space, called the directrix D ;
take the union A of all rays (=half-lines) from V passing thru a point in D;
the set A is a solid angle;
it is said that
the directrix D subtends the angle A
from the vertex V
and
the angle A is subtended by the directrix D from the vertex V ;
if D lies on the unit sphere centered at V, then the numerical 'area' of D
is taken to be the measure in steradians
of the solid angle A

GG16-9
\square units of angle measure

- for sectorial or rotary plane angles there are two primary units of measure that concern us
viz
the dimensionless unit of plane angle measure called degree
(with subunits called 'minute' and 'second')
and
the dimensionless unit of plane angle measure called radian
- for solid angles
there is one primary unit of measure
that concerns us
viz
the dimensionless unit of solid angle measure called steradian
- both the radian and the steradian are supplementary (because dimensionless) SI units ie
units in the
Système International d'Unités (French)
= International System of Units
which is the standard system of scientific units used worldwide

GG16-10
\square the measure in degrees $=$ the degree measure of sectorial angles

- by definition one round angle
$=360$ degrees $=360 \mathrm{deg}=360^{\mathrm{deg}}=360^{\circ}$
1 degree $=1^{\circ}=60$ minutes $=60 \mathrm{~min}=60^{\mathrm{min}}=60^{\prime}$
1 minute $=1^{\prime}=60$ seconds $=60 \mathrm{sec}=60^{\mathrm{sec}}=60^{\prime}{ }^{\prime}$
1 second $=1^{\prime \prime}=1 \mathrm{sec}=1^{\mathrm{sec}}$

GG16-11
\square a vanishing but useful notation

- given an angle A
then its measure
in whatever unit that would be understood
may be denoted by meas A or simply mA;
however
if no ambiguity can reasonably arise,
then the measure of A
may be denoted by A itself
\square classification \& names of sectorial angles characterized by degree measure
- A is a sectorial angle:
$0^{\circ} \leq \mathrm{A} \leq 360^{\circ}$
- A is a zero angle:
$\mathrm{A}=0^{\circ}$
- A is an acute angle:
$0^{\circ}<\mathrm{A}<90^{\circ}$
- A is a right angle:
$\mathrm{A}=90^{\circ}$
- A is an obtuse angle:
$90^{\circ}<\mathrm{A}<180^{\circ}$
- A is a straight angle:

A $=180^{\circ}$

- A is a reflex -obtuse angle:
$180^{\circ}<\mathrm{A}<270^{\circ}$
- A is a reflex - right angle:
$\mathrm{A}=270^{\circ}$
- A is a reflex - acute angle: $270^{\circ}<\mathrm{A}<360^{\circ}$
- A is a round angle:
$\mathrm{A}=360^{\circ}$
note: once around a point gives a round angle
- A is an oblique angle:

A is an acute angle
or
A is an obtuse angle

- A is a reflex - oblique angle:

A is a reflex - obtuse angle
or
A is a reflex - acute angle

- A is a flex angle:
$0^{\circ} \leq \mathrm{A} \leq 180^{\circ}$
- A is a reflex angle:
$180^{\circ} \leq \mathrm{A} \leq 360^{\circ}$

GG16-15

- A is a semisextile angle:
$\mathrm{A}=30^{\circ}$
- A is a semiright angle:
$\mathrm{A}=45^{\circ}$
- A is a sextile angle:
$\mathrm{A}=60^{\circ}$
- A is a trine angle:
$\mathrm{A}=120^{\circ}$
- A is a sesquiright angle:
$\mathrm{A}=135^{\circ}$
- A is a sesquicental angle:
$\mathrm{A}=150^{\circ}$
- A is an n degree angle wh $\mathrm{n} \in$ 思 $[0,360]$:
$\mathrm{A}=\mathrm{n}^{\mathrm{o}}$
- A is a quadrant one angle $=\mathrm{A}$ is a QI angle $=\mathrm{A}$ is in quadrant one $=\mathrm{A} \in \mathrm{QI}$: $0^{\circ} \leq \mathrm{A} \leq 90^{\circ}$
- A is a quadrant two angle $=\mathrm{A}$ is a Q II angle
$=\mathrm{A}$ is in quadrant two $=\mathrm{A} \in \mathrm{Q} I \mathrm{I}$:
$90^{\circ} \leq \mathrm{A} \leq 180^{\circ}$
- A is a quadrant three angle $=\mathrm{A}$ is a Q III angle
$=\mathrm{A}$ is in quadrant three $=\mathrm{A} \in \mathrm{Q}$ III :
$180^{\circ} \leq \mathrm{A} \leq 270^{\circ}$
- A is a quadrant four angle $=\mathrm{A}$ is a QIV angle
$=A$ is in quadrant four $=A \in Q I V$:
$270^{\circ} \leq \mathrm{A} \leq 360^{\circ}$
- A is a quadrantal angle $=\mathrm{A}$ is a Q angle
$=A$ is quadrantal $=A \in Q$:
$\mathrm{A}=0^{\circ}$ or 90° or 180° or 270° or 360°

GG16-17

- A is an open quadrant N angle and

A is in open quadrant N provided that the corresponding strict inequalities hold, and a small open circle may be placed above Q as $\stackrel{\mathrm{O}}{\mathrm{Q}}$ for the notation (here o stands for ' open');
to emphasize the earlier notion,
say that
A is a closed quadrant N angle and

A is in closed quadrant N , and place a horizontal bar above Q as $\overline{\mathrm{Q}}$ for the notation

- A and B are complementary angles
$=\mathrm{A}$ and B are complementary
$=\mathrm{A}$ and B are complements (of each other)
$=A$ is complementary to B
$=\mathrm{A}$ is the complement of B :
$\mathrm{A}+\mathrm{B}=90^{\circ}$
- A and B are supplementary angles
$=A$ and B are supplementary
$=\mathrm{A}$ and B are supplements (of each other)
$=\mathrm{A}$ is supplementary to B
$=\mathrm{A}$ is the supplement of B :
$\mathrm{A}+\mathrm{B}=180^{\circ}$

GG16-19

- A and B are replementary angles
$=\mathrm{A}$ and B are replementary
$=\mathrm{A}$ and B are replements (of each other)
$=A$ is replementary to B
$=\mathrm{A}$ is the replement of B :
$\mathrm{A}+\mathrm{B}=270^{\circ}$
- A and B are explementary angles
$=\mathrm{A}$ and B are explementary
$=A$ and B are explements (of each other)
$=\mathrm{A}$ is explementary to B
$=A$ is the explement of B :
$\mathrm{A}+\mathrm{B}=360^{\circ}$

GG16-20
\square the measure in radians = the radian measure of sectorial angles

- by definition one round angle
$=2 \pi$ radians $=2 \pi \mathrm{rad}=2 \pi^{\mathrm{rad}}=2 \pi^{\mathrm{r}}$
1 radian $=1 \mathrm{rad}=1^{\mathrm{rad}}=1^{\mathrm{r}}$
\square an angle on angle measure: degree measure vs radian measure; numerical conversion from one measure to the other
- remember
$360^{\circ}=$ one round angle $=2 \pi^{r}$
- start with
$360^{\circ}=2 \pi^{r}$
- now divide successively by the $24=4 \times 3 \times 2$ factors of
$360=2^{3} \times 3^{2} \times 5 \quad$ (pf)
viz

1
360
2180
$3 \quad 120$
4
$5 \quad 72$
6
60
$8 \quad 45$
9
40
10
36
12
30
15
24
$18 \quad 20$

$$
\begin{array}{rlrl}
360^{\circ} & =2 \pi^{\mathrm{r}} & 1^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{180} \\
180^{\mathrm{o}} & =\pi^{\mathrm{r}} & 2^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{90} \\
120^{\mathrm{o}} & =\frac{2 \pi^{\mathrm{r}}}{3} & 3^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{60} \\
90^{\circ} & =\frac{\pi^{\mathrm{r}}}{2} & 4^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{45} \\
72^{\mathrm{o}}=\frac{2 \pi^{\mathrm{r}}}{5} & 5^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{36} \\
60^{\circ} & =\frac{\pi^{\mathrm{r}}}{3} & 6^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{30} \\
45^{\mathrm{o}} & =\frac{\pi^{\mathrm{r}}}{4} & 8^{\mathrm{o}}=\frac{2 \pi^{\mathrm{r}}}{45} \\
40^{\circ} & =\frac{2 \pi^{\mathrm{r}}}{9} & 9^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{20} \\
36^{\mathrm{o}} & =\frac{\pi^{\mathrm{r}}}{5} & 10^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{18} \\
30^{\mathrm{o}} & =\frac{\pi^{\mathrm{r}}}{6} & 12^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{15} \\
24^{\mathrm{o}} & =\frac{2 \pi^{\mathrm{r}}}{15} & 15^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{12} \\
20^{\mathrm{o}} & =\frac{\pi^{\mathrm{r}}}{9} & 18^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{10}
\end{array}
$$

- also note

$$
1^{\mathrm{o}}=\frac{\pi}{180}^{\mathrm{r}} \approx 0.01745+{ }^{\mathrm{r}}
$$

$$
1^{\mathrm{r}}={\frac{180^{\mathrm{o}}}{\pi}}^{\pi} \approx 57.29578-^{\mathrm{o}} \approx 57^{\mathrm{o}} 17^{/} 45-^{/ /}
$$

which contains
a remarkable accidental (?) simultaneous occurrence of 1745 in the two approximations

- now 1745 was a very good year:
it was the year the Leyden jar was invented

GG16-24
\square measure of circular $=$ circle arcs

- by definition
the measure of a circular = circle arc
is
the measure in
degrees/minutes/seconds/radians/whatever of the central angle, a sectorial angle, that has its vertex at the center of the arc and
that subtends the given arc
- the notion of arc measure
is useful in
astronomy
geodesy
geography
meteorology
space navigation
terrestrial navigation

GG16-25
\square clockwise vs counterclockwise
Δ the meaning of the words

- 'clockwise' \& 'counterclockwise'
refer physically
to the two opposite directions of rotary motion
in a horizontal or vertical plane before us
- 'clockwise'
means literally
'in the manner of the clock'
ie
in the manner in which clockhands turn;
clockhands are designed to turn the way they do because
that is the direction of motion
of the shadow of the gnomon on a sundial
in the northern hemisphere
(it's counterclockwise on a sundial
in the southern hemisphere
but their clocks still turn the same as northerners')
- 'counterclockwise'
means literally
'counter/contrary/opposed/opposite to clockwise' ie
opposite to the manner in which clockhands turn
GG16-26
Δ meaning of positive \& negative rotary directions
- for a physical plane:
the 'positive' rotary direction for/in/of the physical plane
$=\mathrm{df}$ the counterclockwise direction
\&
the 'negative' rotary direction for/in/of the physical plane
$=\mathrm{df}$ the clockwise direction
- for a geometric plane
provided with
a rectangular (x, y) coordinate system:
the 'positive' rotary direction for/in/of the coordinate plane
$=\mathrm{df}$ from the positive x -axis to the positive y -axis around the origin proceeding first thru quadrant one \&
the 'negative' rotary direction for/in/of the coordinate plane $=\mathrm{df}$ from the positive y -axis to the positive x -axis around the origin proceeding first thru quadrant one

GG16-27
Δ the two definitions of
'positive' \& 'negative' rotary directions for a physical plane
\&
a coordinate plane
agree
when
the coordinate axes are taken to be in the canonical/standard pictorial position
viz

GG16-28
Δ explaining the choice

- ¿ why should counterclockwise be chosen as positive ?
- 'counterclockwise' is equivalent to 'turning to the left'
- $¿$ is there a built-in human bias
for turning left rather than right?
- it is possible that for the majority of people turning to the left is physiologically easier than
turning to the right;
i find this true when riding on a bicycle;
i am right-handed
- oval racing courses for
bicycles
boats/ships
cars
dogs
humans on foot
horses
motorcycles
planes
all seem to be run counterclockwise
GG16-29
\square the measure in degrees / radians
$=$ the degree $/$ radian measure of rotary angles
- a rotary angle is defined to be positive / negative and have a positive / negative numerical measure according as its defining rotation is in the counterclockwise / clockwise direction
- the absolute value of the measure of a rotary angle in degrees / radians
may be determined by
(the possibly repeated use of)
the measurement of sectorial angles
in degrees / radians
- there is also a unit of measure of rotary angles called turn $=360^{\circ}=2 \pi^{\mathrm{r}}=$ once around the (counter) clock

GG16-30
\square some nonnegative rotary angles measured in degrees / radians / turns

- $0^{\mathrm{o}}=0^{\mathrm{r}}=$ zero turns
- $90^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{2}=$ quarter - turn
- $180^{\circ}=\pi^{\mathrm{r}}=$ half -turn
- $270^{\circ}=\frac{3 \pi^{\mathrm{r}}}{2}=$ three - quarter - turn
- $360^{\circ}=2 \pi^{\mathrm{r}}=$ one turn
- $720^{\circ}=4 \pi^{\mathrm{r}}=$ two turns
- $1080^{\circ}=6 \pi^{\mathrm{r}}=$ three turns etc
\square the measure in radians = the radian measure of radial angles
- by definition
the measure in radians $=$ the radian measure of a radial angle
is
the numerical value
of the length s of the intersection M of
the radial angle
and
the unit circle U
with center at the vertex of the radial angle
if the length of M exists;
if not
and
if M is Lebesgue measurable in dimension 1 on U , then the numerical value
of the 1-dimensional Lebesgue measure of M may be used as the measure of the radial angle; note that the radial angle is subtended by M
\square the measure in steradians $=$ the steradian measure of solid angles
- by definition
the measure insteradians $=$ the steradian measure of a solid angle
is
the numerical value
of the area S of the intersection M of
the solid angle
and
the unit sphere U
with center at the vertex of the solid angle
if the area of M exists;
if not
and
if M is Lebesgue measurable in dimension 2 on U , then the numerical value
of the 2 -dimensional Lebesgue measure of M may be used as the measure of the solid angle; note that the solid angle is subtended by M

\square notation for steradian measure

- the notation for steradian measure is
n steradians $=\mathrm{n} \mathrm{sr}=\mathrm{n}^{\mathrm{sr}}$ wh $\mathrm{n} \in$ nonneg real nr
\square some examples of the steradian measure of solid angles
- one octant solid angle $\quad=\frac{\pi^{\mathrm{sr}}}{2}$
- one quarter - turn
dihedralsolid angle $\quad=\pi^{\text {sr }}$
- one flat solid angle $\quad=2 \pi^{\mathrm{sr}}$
- one three - quarter - turn dihedral solid angle
$=3 \pi^{\mathrm{sr}}$
- all space solid angle
$=4 \pi^{\mathrm{sr}}$

GG16-34
\square two analogous theorems, one in the plane
and one in space

- let a circle of radius r be centered at the vertex of a radial plane angle with radian measure α and let circle and angle intersect in a set of length s; then
$\mathrm{s}=\mathrm{r} \alpha \& \alpha=\frac{\mathrm{s}}{\mathrm{r}}$
- let a sphere of radius r be centered at the vertex of a solid angle with steradian measure α and let sphere and angle intersect in a set of area S; then
$S=r^{2} \alpha \quad \& \alpha=\frac{S}{r^{2}}$
\square two analogous corollaries
to the two preceding analogous theorems, one in the plane
and one in space
- an arc of length 1 on a circle of radius 1
subtends
a central plane angle of 1 radian
- a region of area 1
on a sphere of radius 1
subtends
a central solid angle of 1 steradian

GG16-36

\square measures of time

- by definition

 measures of time include1 day
$=$ one mean solar day
$=$ the (apparent) revolution period of the averaged Sun

$$
\begin{aligned}
& 1 \text { day }=1 \mathrm{da}=1 \mathrm{~d}=1^{\mathrm{da}}=1^{\mathrm{d}} \\
& =24 \text { hours }=24 \mathrm{hr}=24 \mathrm{~h}=24^{\mathrm{hr}}=24^{\mathrm{h}}
\end{aligned}
$$

$$
1 \text { hour }=1 \mathrm{hr}=1 \mathrm{~h}=1^{\mathrm{hr}}=1^{\mathrm{h}}
$$

$$
=60 \text { minutes }=60 \mathrm{~min}=60 \mathrm{~m}=60^{\mathrm{min}}=60^{\mathrm{m}}
$$

$$
1 \text { minute }=1 \mathrm{~min}=1 \mathrm{~m}=1^{\mathrm{min}}=1^{\mathrm{m}}
$$

$$
=60 \text { seconds }=60 \mathrm{sec}=60 \mathrm{~s}=60^{\mathrm{sec}}=60^{\mathrm{s}}
$$

$$
1 \text { second }=1 \mathrm{sec}=1 \mathrm{~s}=1^{\mathrm{sec}}=1^{\mathrm{s}}=\text { ca one heart beat }
$$

- the basic relationship between the sexagesimal measure of time and
the sexagesimal measure of angle;
by definition
1 day $=360^{\circ}$
because
the averaged Sun makes
exactly one (apparent) revolution
in one mean solar day
whence
1 day of time $=1^{\mathrm{d}}=360^{\circ}=360$ degrees of angle
1 hour of time $=1^{\mathrm{h}}=15^{\circ}=15$ degrees of angle
1 minute of time $=1^{\mathrm{m}}=15^{\prime}=15$ minutes of angle
1 second of time $=1^{\mathrm{S}}=15^{\prime}=15$ seconds of angle

GG16-38
\square comparing notation for time and for angle

- time
$=$ A hours + B minutes $+C$ seconds
$=\mathrm{AhrBminCsec}$
$=\mathrm{AhBmCs}$
$=\mathrm{A}^{\mathrm{hr}} \mathrm{B}^{\mathrm{min}} \mathrm{C}^{\mathrm{sec}}$
$=A^{h} B^{m} C^{s}$
- angle
$=\mathrm{A}$ degrees +B minutes +C seconds
$=\mathrm{A} \operatorname{deg} \mathrm{B} \min \mathrm{C} \sec$
$=A^{0} B^{\prime} C^{\prime \prime}$

\square the standard equivalence

between angle measure \& time measure

- angle ito time

$$
\begin{aligned}
360^{\circ} & =24^{\mathrm{h}} \\
270^{\mathrm{o}} & =18^{\mathrm{h}} \\
180^{\mathrm{o}} & =12^{\mathrm{h}} \\
90^{\circ} & =6^{\mathrm{h}} \\
1^{\mathrm{o}} & =4^{\mathrm{m}} \\
1^{\prime} & =4^{\mathrm{s}} \\
1^{\prime \prime} & =\left(\frac{1}{15}\right)^{\mathrm{s}}
\end{aligned}
$$

- time ito angle
$24^{\mathrm{h}}=360^{\circ}$
$18^{\mathrm{h}}=270^{\circ}$
$12^{\mathrm{h}}=180^{\circ}$
$6^{h}=90^{\circ}$
$1^{\mathrm{h}}=15^{\mathrm{o}}$
$1^{\mathrm{m}}=15^{\prime}$
$1^{\mathrm{s}}=15^{/ /}$

GG16-41
\square the seven special (= integer - hour) angles in quadrant I ito degrees, radians, hours
since $1^{\mathrm{h}}=15^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{12}$
it follows that

- $0^{0}=0^{r}=0^{\mathrm{h}}$
- $15^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{12}=1^{\mathrm{h}}$
- $30^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{6}=2^{\mathrm{h}}$
- $45^{\mathrm{o}}=\frac{\pi^{\mathrm{r}}}{4}=3^{\mathrm{h}}$
- $60^{\circ}=\frac{\pi^{\mathrm{r}}}{3}=4^{\mathrm{h}}$
- $75^{\mathrm{o}}=\frac{5 \pi^{\mathrm{r}}}{12}=5^{\mathrm{h}}$
- $90^{\circ}=\frac{\pi^{\mathrm{r}}}{2}=6^{\mathrm{h}}$
\square an illustration of esthetics
as a guiding principle in mathematics
- a pretty formula
defines radian measure of a sectorial angle;
think of a given circle
with a given central angle
intercepting a subtending arc on the circle; think of the associated numbers
viz
the length of the radius $=r$
the length of the subtending circle arc $=\mathrm{s}$
the measure of the central angle $=\alpha$ (to be determined) and note the alphabetic choices of initial letters of words; then the following formula holds
$\mathrm{s}=\mathrm{r} \alpha$
if and only if
$\alpha=\frac{\mathrm{s}}{\mathrm{r}}$
which is the definition
of the radian measure of the central angle;
no other definition of angle measure will do
to make the desired formula hold;
eg
if the angle α were measured in degrees,
then the formula would become
$\mathrm{s}=\frac{\pi}{180} \mathrm{r} \alpha$
which is not so pretty
nor so simple nor so efficient nor so theoretically useful; one can say that radian measure of angles
is natural and inevitable
while degree measure of angles
is an historical accident
altho it is now well - entrenched in our lives
and we have to make the best of it
(but it is not too bad at that)

GG16-44
\square historical comments

- we have the ancient Babylonians to thank for our present use of sexagesimal (= base 60) numeration in the measure of angle/arc/time which we inherited from them;
ca 2000 BCE the Babylonians in Mesopotamia, between the Tigris \& Euphrates rivers in the Middle East, began to use a number system based on 60; they likely chose base 60 because of the relatively large number of factors of 60 which has the effect of producing lots of easily written fractions
- the ancient Babylonians \& Greeks divided up the lighter day time into 12 equal parts \& also the darker night time into 12 equal parts;
12 was likely chosen because
12 has many factors
\& 12 is still relatively small
\& 12 is also itself a factor of 60

GG16-45

- it is an historical accident that the degree of angle was chosen so that there are 360 degrees in a round angle;
it was likely caused by taking
the angle of an equilateral triangle
viz 60 degrees
as the unit of angle
and then using the base 60 numeration system
so that a degree is recognized as
one-sixtieth of an angle of an equilateral triangle

GG16-46

- ca 150 CE

Claudius Ptolemy (Latin: Ptolemaeus) of Alexandria (ca 90-168CE, Egyptian;
astronomer, geographer, mathematician) used characters on numbers with sexagesimal fractions that resemble our present-day characters for degree, minute, second of angle/arc

- in the 16th century
the characters
o, ', ' ', '' ', iv, etc
(the first three are our familiar ones)
began to be used
as righthand superscripts
denoting
degrees, minutes, seconds, thirds, fourths, etc in sexagesimal numeration
- the above symbols may be simply designations of $0,1,2,3,4$, etc which with negative signs are the exponents of 60 in a number given in units of degrees with the fractional part written to the base 60

GG16-47
\square etymology of words
for the measures of angle/arc/time

- degree from
degradus (Latin) $=$ degree from
de (Latin) $=$ down
$+$
gradus (Latin) = grade, step
- hour from
hora $($ Latin $)=$ hour from
' $\omega \rho \alpha$ (Greek) = hour
- minute
from
minuta (Latin) $=$ small
from
pars minuta prima (Latin) $=$ first small part
- second
from
secunda (Latin) $=$ second
from
pars minuta secunda (Latin) $=$ second small part
GG16-48

- radian

from
radius (English)
from
radius (Latin) = spoke of a wheel

- steradian from
ste- = abbreviation of
stereo- $($ English $)=$ solid
$+$
radian (English)
- sexagesimal $=$ relating to the number sixty from
sexigesimus (Latin) = sixtieth from
sexaginta (Latin) $=$ sixty

GG16-49

- clockwise = rotating like the hands of a clock
from
clock (English)
$+$
-wise (English) = in the manner of
- counterclockwise = rotating contrary to the hands of a clock
from
counter- (English) $=$ opposite
$+$
clockwise (English)

GG16-50

- the word 'radian' first appeared in print in 1879;
'radian' comes from
the Latin-English word
radius minus -us plus -an;
the Latin word 'radius'
means many things
viz
beam of light
bone in human forearm
kind of long olive
measuring rod
radius of a circle
ray
rod
spoke of a wheel
staff
stake
weaving shuttle
- the word 'steradian' first appeared in print in 1881; the prefix 'ste-' comes from
the English prefix 'stereo-' = solid
which comes from the Greek word
$\sigma \tau \varepsilon \rho \varepsilon \circ \varsigma=$ solid
- a wild guess:
radius + angle
$=$ radi + an
= radian

