Sets of Integers
 \#15 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2000

GG15-1 (27)
© 2000 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG15-2

- the set of all integers
$=$ the set of integers
$=$ the integer set
$=$ the integers
$=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}$
$=\mathrm{dn} \mathbb{Z}$
$=$ rd cap open zee $=$ zee
- the set of all nonnegative integers
= the set of nonnegative integers
= the nonnegative integer set
= the nonnegative integers
$=\{0,1,2,3, \cdots\}$
$=\mathrm{dn} \mathbb{N}$
= rd cap open en $=$ en
- the set of all positive integers
$=$ the set of positive integers
$=$ the positive integer set
$=$ the positive integers
$=\{1,2,3, \cdots\}$
$=\mathrm{dn} \mathbb{P}$
$=$ rd cap open pe $=$ pe
- the set of all nonpositive integers
$=$ the set of nonpositive integers
$=$ the nonpositive integer set
$=$ the nonpositive integers
$=\{0,-1,-2,-3, \cdots\}$
$=\mathrm{dn} \overline{\mathbb{N}}$
$=$ rd cap open en bar $=$ en bar
- the set of all negative integers
$=$ the set of negative integers
$=$ the negative integer set
$=$ the negative integers
$=\{-1,-2,-3, \cdots\}$
$=\mathrm{dn} \sqrt{\square}$
$=$ rd cap open pe bar $=$ pe bar
- note that the ' minus sign' in $\overline{\mathbb{N}}$ and \mathbb{P} are conveniently placed above the letters and not before; as for the ' etymology' of the capital open letters, Z is from die Zahl (German) = number \mathbb{N} is from nonnegative, natural, number P is from positive; the open type style, which is a style seldom appearing in mathematical literature, was adopted for the sake of this particular usage and for immediate recognition; these letters are now in almost universal use with the present meaning
- an alternative notation based on \mathbb{Z}
the nonnegative integer set $=\mathbb{N}=\mathbb{Z}_{+}$ the nonpositive integer set $=\overline{\mathbb{N}}=\mathbb{Z}_{-}$ the positive integer set $\quad=\mathbb{Z}=\mathbb{Z}_{+0}$ the negative integer set $=\bar{\square}=Z_{-0}$

GG15-9

- the set of all nonzero integers
$=$ the set of nonzero integers
$=$ the nonzero integer set
$=$ the nonzero integers
$=\{\cdots,-3,-2,-1,1,2,3, \cdots\}$
$=\mathrm{dn} Z_{*}$
$=$ rd Z (sub) star
think of \mathbb{Z}_{*} as ' punctured \mathbb{Z} '
where zero is punched out of \mathbb{Z},
leaving a hole represented by the star
- the set of all even integers / numbers
$=$ the set of even integers / numbers
$=$ the even integer / number set
$=$ the even integers / numbers
$=\{\cdots,-6,-4,-2,0,2,4,6, \cdots\}$
$=\{2 n \mid n \in Z\}$
$=2 Z$
- the set of all odd integers / numbers
$=$ the set of odd integers $/$ numbers
$=$ the odd integer $/$ number set
$=$ the odd integers $/$ numbers
$=\{\cdots,-5,-3,-1,1,3,5, \cdots\}$
$=\{2 \mathrm{n}+1 \mid \mathrm{n} \in \mathbb{Z}\}$
$=2 z+1$
- the set of all integer multiples of n wh $n \in$ pos int
$=$ the set of integer multiples of n
$=$ the integer multiple set of n
$=$ the integer multiples of n
$=\{\cdots,-3 \mathrm{n},-2 \mathrm{n},-\mathrm{n}, 0, \mathrm{n}, 2 \mathrm{n}, 3 \mathrm{n}, \cdots\}$
$=\{k n \mid k \in \mathbb{Z}\}$
$=\mathrm{n}$ Z
$\mathrm{n} \in \operatorname{pos}$ int \Rightarrow
- the set of all equivalence classes of integers modulo n
$=$ the set of equivalence classes of integers $\bmod n$
$=$ the set of integer equivalence classes mod n
$=$ the quotient set of integers mod n
$=$ the integer quotient set mod n
$=\{n \mathbb{Z}+\mathrm{k} \mid \mathrm{k} \in \mathbb{Z}[0, \mathrm{n}-1]\}$
= z/nz
$=d n Z_{n}$
- intervals of integers
every set of integers has a natural order and hence intervals of various kinds are automatically defined for sets of integers; here are three examples of blocks and rays in the entire integer spread $\underset{Z}{Z}$

GG15-15

- blocks of integers
$a, b \in \mathbb{Z} \& a \leq b \Rightarrow$ the block of integers from a to b
$=$ the integer block from a to b
$=$ the set of all integers from a to b
$=$ the closed interval of \mathbb{Z} from a to b
$=\{a, a+1, a+2, \cdots, b\}$
$=\{n \mid n \in \mathbb{Z} \& a \leq n \leq b\}$
$=z[a, b]$
- right rays of integers
$a \in \mathbb{Z} \Rightarrow$
the right ray of integers from a
$=$ the integer right ray from a
$=$ the set of all integers from a to the right
$=$ the right ray of Z from a
$=\{a, a+1, a+2, \cdots\}$
$=\{n \mid n \in \mathbb{Z} \& a \leq n\}$
$=\mathbb{Z}[a, \rightarrow)$
- left rays of integers
$a \in \mathbb{Z} \Rightarrow$
the left ray of integers to a
$=$ the integer left ray to a
$=$ the set of all integers to a from the left
$=$ the left ray of $\underset{Z}{ }$ to a
$=\{\cdots, a-2, a-1, a\}$
$=\{n \mid n \in \mathbb{Z} \& n \leq a\}$
$=\mathbb{Z}(\leftarrow, \mathrm{a}]$
- the file of length n wh $n \in$ pos int
$=$ the n - file
$=\mathrm{dn} \underline{\mathrm{n}}$
$=r d n$ file
$=\mathrm{df}$ the set of the first n positive integers
$=\{1,2,3, \cdots, n\}$
$=\mathbb{P}[1, \mathrm{n}]$
- the set of all prime integers / numbers
$=$ the set of prime integers $/$ numbers
= the prime integer / number set
= the prime integers $/$ numbers
= the set of all primes
$=$ the set of primes
= the prime set
$=$ the primes
$=\{2,3,5,7,11,13,17,19, \cdots\}$
$=\mathrm{dn} \operatorname{Prm}=\operatorname{Pr}=\mathrm{P}$
- the set of all odd prime integers / numbers
$=$ the set of odd prime integers / numbers
$=$ the odd prime integer / number set
$=$ the odd prime integers $/$ numbers
$=$ the set of all odd primes
$=$ the set of odd primes
$=$ the odd prime set
$=$ the odd primes
$=\{3,5,7,11,13,17,19,23, \cdots\}$
$=\mathrm{dn} \mathrm{P}_{*}$
$=\operatorname{rdP}$ (sub) star
- the set of all composite integers / numbers
$=$ the set of composite integers / numbers
$=$ the composite integer / number set
$=$ the composite integers $/$ numbers
$=$ the set of all composites
$=$ the set of composites
$=$ the composite set
$=$ the composites
$=\{1,4,6,8,9,10,12,14, \cdots\}$
$=\mathrm{dnCmp}=\mathrm{Cm}=\mathrm{C}$
- the set of all plural composite integers / numbers
= the set of plural composite integers / numbers
= the plural composite integer / number set
= the plural composite integers / numbers
= the set of all plural composites
= the set of plural composites
= the plural composite set
= the plural composites
$=\{4,6,8,9,10,12,14,15, \cdots\}$
$=\operatorname{dnC}$ *
$=r d$ (sub) star
- the sequence of all prime integers / numbers
$=$ the sequence of prime integers / numbers
$=$ the prime integer / number sequence
$=$ the sequence of all primes
$=$ the sequence of primes
$=$ the prime sequence
$=(2,3,5,7,11,13,17,19, \cdots)$
$=\mathrm{dn}\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \cdots\right)$
$=\mathrm{dn} \overline{\mathrm{Pr}}=\overline{\mathrm{Pr}}=\overline{\mathrm{P}}$
- the sequence of all composite integers / numbers
$=$ the sequence of composite integers / numbers
$=$ the composite integer / number sequence
$=$ the sequence of all composites
$=$ the sequence of composites
$=$ the composite sequence
$=(1,4,6,8,9,10,12,14, \cdots)$
$=\operatorname{dn}\left(c_{1}, c_{2}, c_{3}, \cdots\right)$
$=\mathrm{dn} \overline{\mathrm{C}} \mathrm{mp}=\overline{\mathrm{C}} \mathrm{m}=\overline{\mathrm{C}}$
note: general terminological \& notational compression
- the set of all items
$=$ the set of items
$=$ the item set
$=$ the items
if the set of all items
is provided with a structure
to obtain a system
(note the triple ess dictum
system $=$ set + structure)
then
- the system of all items
$=$ the system of items
$=$ the item system
and
the same symbol may be used
for both set \& system

eg

- the set of all integers
$=$ the set of integers
$=$ the integer set
$=$ the integers
$=Z$ \&
- the ring of all integers
$=$ the ring of integers
$=$ the integer ring
$=Z$
\&
- the ring of all Gaussian integers
$=$ the ring of Gaussian integers
$=$ the Gaussian integer ring
$=\mathrm{df} Z+\mathrm{iz}$
$=\mathbb{Z}[\mathrm{i}]$

