Integers Defined As Sets

#14 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2000

GG14-1 (15)

© 2000 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

 \Box integers defined as sets

the von Neumann description of an ordinal as the set of all smaller ordinals leads to the following recursive definition of the nonnegative integers as sets

• the successor function on the class of sets to the class of sets is defined explicitly as follows

 $n \mapsto n^+ = n \cup \{n\} (n \in set)$

where n^+ is called the successor of n and the notation n^+ (read n plus) is suggested by n + 1 the nonnegative integers are defined as sets
by the following recursive definition

rec def $0 = \emptyset$ $n^{+} = n \cup \{n\} \quad (n \in \text{set var})$

```
• more fully

let

0 =_{rd} zero =_{df} \emptyset
1 =_{rd} one =_{df} 0^{+} = 0 \cup \{0\} = \{0\} = \{\emptyset\}
2 =_{rd} two =_{df} 1^{+} = 1 \cup \{1\} = \{0,1\} = \{\emptyset,\{\emptyset\}\}\}
3 =_{rd} three =_{df} 2^{+} = 2 \cup \{2\} = \{0,1,2\} = \{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\}
etc
```

```
according to the standard
```

Indo – Arabic decimal positional notation and terminology; note that

each nonnegative integer is defined as

the set of all smaller nonnegative integers;

also note that

each nonnegative integer is defined ito

the empty set and the set - builder

which suggests the Latin motto

Omnia ex nihilo. = Everything from nothing.

this recursive definition
of the nonnegative integers as sets
may be complemented by
the following explicit definition
of the negative integers as sets

- n=_{rd} minus n =_{df} {n} (n \in nonzero nonneg int)

note that the ' minus sign' here is just a part of the notation; we have not yet defined the unary operation of negation of integers; in case of notational ambiguity, use the elbow – here in place of the dash – • we can now construct

the ladder of integers as sets:

etc

$$4 = \{0, 1, 2, 3\}$$

$$3 = \{0, 1, 2\}$$

$$2 = \{0, 1\}$$

$$1 = \{0\}$$

$$0 = \emptyset$$

$$-1 = \{1\}$$

$$-2 = \{2\}$$

$$-3 = \{3\}$$

$$-4 = \{4\}$$
etc

thus we have the following five basic sets of integers in which everything is defined as a set:

(1) P

- = ' open cap pe'
- = ' pe'
- = the set of all positive integers
- = the set of positive integers
- = the positive integer set
- = the positive integers

 $= \{1, 2, 3, \cdots\}$

 $(2) \ \overline{\mathbb{P}}$

= ' open cap pe bar'

= ' pe bar'

- = the set of all negative integers
- = the set of negative integers
- = the negative integer set
- = the negative integers

$$= \{-1, -2, -3, \cdots\}$$

(3) 🕅

= 'open cap en'

= ' en'

- = the set of all nonnegative integers
- = the set of nonnegative integers
- = the nonnegative integer set
- = the nonnegative integers
- $= \{0, 1, 2, 3, \cdots\}$

 $(4) \ \overline{\mathbb{N}}$

- = ' open cap en bar'
- = ' en bar'
- = the set of all nonpositive integers
- = the set of nonpositive integers
- = the nonpositive integer set
- = the nonpositive integers
- $= \{0, -1, -2, -3, \cdots\}$

(5) 置

= 'open cap zee'

= 'zee'

- = the set of all integers
- = the set of integers
- = the integer set
- = the integers
- $= \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$
- note that the 'minus sign' in $\overline{\mathbb{P}}$ and $\overline{\mathbb{N}}$ are conveniently placed above the letters and not before;

as for the 'etymology' of the open capital letters,

₽ is from positive

 $\mathbb N$ is from nonnegative, natural, number

```
\mathbb{Z} is from die Zahl (German) = number;
```

the open type style,

which is a style seldom appearing in mathematical literature,

was adopted for the sake of this particular usage

and for immediate recognition;

these letters are now in almost universal use

with the present meaning GG14-10

• the relation of order between integers, the unary operation of absolute value formation for integers, and the unary operation of negation of integers are simply and explicitly definable as follows:

• order

 $m < n \Leftrightarrow m \in n$ - m < n (m \neq 0) - m < - n \leftarrow n \in m (m \neq 0 \neq n)

- wh m, $n \in \text{nonneg int}$
- absolute value |n| = n |-n| = n ($n \neq 0$) wh $n \in nonneg int$
- negation -0 = 0 $-n = \neg n \quad (n \neq 0)$ $-(\neg n) = n \quad (n \neq 0)$ wh n \epsilon nonneg int

• the customary recursive definitions of addition and multiplication for nonnegative integers are:

rec def of addition for nonnegative integers m + 0 = m $m + n^+ = (m + n)^+$ wh m, n \in nonneg int var

rec def of multiplication for nonnegative integers $m \cdot 0 = 0$ $m \cdot n^+ = (m \cdot n) + m$ wh m, n \in nonneg int var

```
the binary operations of
addition and multiplication for integers
are definable by cases
eg
(-m) + (-n) = - (m + n)
&
(-m)(-n) = mn
```

wh m, $n \in$ nonneg int

```
the binary operation of
subtraction for integers
is definable explicitly
ito addition and negation for integers
viz
```

m - n = m + (-n)

• the partial binary operation of division for integers occupies a special position since division by zero is not defined (nor even sensibly definable) and since two integers (quotient and remainder) result from the operation of division for integers; division for integers is ring division; division for rational numbers, for real numbers, and for complex numbers in which only a single number, the quotient, results is field division

• division for integers

```
q is the (integer) quotient
and
r is the (nonnegative integer) remainder
for the division of
the dividend m
divided by
the divisor n \neq 0
```

means by definition

 $m = nq + r \quad (0 \leq r < |n|)$

wh m, n, q, $r \in int$; for this definition to be meaningful, a unique existence theorem for q and r must be proved