Integers Defined As Sets

\#14 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2000

GG14-1 (15)
© 2000 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG14-2
\square integers defined as sets

- the von Neumann description of an ordinal as the set of all smaller ordinals leads to the following recursive definition of the nonnegative integers as sets
- the successor function
on the class of sets to the class of sets
is defined explicitly
as follows
$\mathrm{n} \mapsto \mathrm{n}^{+}=\mathrm{n} \cup\{\mathrm{n}\} \quad(\mathrm{n} \in \operatorname{set})$
where n^{+}is called the successor of n
and the notation n^{+}(read n plus) is suggested by $\mathrm{n}+1$

GG14-3

- the nonnegative integers are defined as sets by the following recursive definition

rec def

$$
\begin{aligned}
& 0=\varnothing \\
& \mathrm{n}^{+}=\mathrm{n} \cup\{\mathrm{n}\} \quad(\mathrm{n} \in \operatorname{set} \text { var })
\end{aligned}
$$

- more fully
let
$0={ }_{\text {rd }}$ zero $={ }_{\mathrm{df}} \varnothing$
$1==_{\mathrm{rd}}$ one $=_{\mathrm{df}} 0^{+}=0 \cup\{0\}=\{0\}=\{\varnothing\}$
$2={ }_{\text {rd }}$ two $={ }_{\text {df }} 1^{+}=1 \cup\{1\}=\{0,1\}=\{\varnothing,\{\varnothing\}\}$
$3={ }_{\text {rd }}$ three $={ }_{\mathrm{df}} 2^{+}=2 \cup\{2\}=\{0,1,2\}=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$ etc
according to the standard
Indo - Arabic decimal positional notation and terminology; note that
each nonnegative integer is defined as
the set of all smaller nonnegative integers;
also note that
each nonnegative integer is defined ito
the empty set and the set - builder
which suggests the Latin motto
Omnia ex nihilo. = Everything from nothing.

GG14-5

- this recursive definition
of the nonnegative integers as sets
may be complemented by
the following explicit definition
of the negative integers as sets
$-n$
$={ }_{r d}$ minus n
$==_{\mathrm{df}}\{\mathrm{n}\} \quad(\mathrm{n} \in$ nonzero nonneg int $)$
note that the ' minus sign' here is just a part of the notation; we have not yet defined the unary operation of negation of integers; in case of notational ambiguity, use the elbow \neg here in place of the dash -

- we can now construct

 the ladder of integers as sets:$$
\begin{aligned}
& \text { etc } \\
& 4=\{0,1,2,3\} \\
& 3=\{0,1,2\} \\
& 2
\end{aligned}=\{0,1\}, \begin{aligned}
& 1=\{0\} \\
& 0=\varnothing \\
&-1=\{1\} \\
&-2=\{2\} \\
&-3=\{3\} \\
&-4=\{4\} \\
& \text { etc }
\end{aligned}
$$

- thus we have the following
five basic sets of integers in which everything is defined as a set:
(1) \mathbb{P}
$=$ ' open cap pe'
$=$ ' pe^{\prime}
= the set of all positive integers
$=$ the set of positive integers
$=$ the positive integer set
$=$ the positive integers
$=\{1,2,3, \cdots\}$
(2) $\bar{\square}$
$=$ ' open cap pe bar'
$=$ ' pe bar'
$=$ the set of all negative integers
$=$ the set of negative integers
$=$ the negative integer set
$=$ the negative integers
$=\{-1,-2,-3, \cdots\}$
GG14-8

(3) \mathbb{N}

$=$ ' open cap en'
$=$ ' en '
$=$ the set of all nonnegative integers
$=$ the set of nonnegative integers
$=$ the nonnegative integer set
$=$ the nonnegative integers
$=\{0,1,2,3, \cdots\}$
(4) $\overline{\mathbb{N}}$
$=$ ' open cap en bar'
$=$ ' en bar'
$=$ the set of all nonpositive integers
$=$ the set of nonpositive integers
$=$ the nonpositive integer set
$=$ the nonpositive integers
$=\{0,-1,-2,-3, \cdots\}$

(5) Z

$=$ ' open cap zee'
= 'zee'
$=$ the set of all integers
$=$ the set of integers
$=$ the integer set
$=$ the integers
$=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}$

- note that the ' minus sign' in $\overline{\mathbb{P}}$ and $\overline{\mathbb{N}}$ are conveniently placed above the letters and not before; as for the ' etymology' of the open capital letters, \mathbb{P} is from positive
\mathbb{N} is from nonnegative, natural, number
\mathbb{Z} is from die Zahl (German) = number; the open type style, which is a style seldom appearing in mathematical literature, was adopted for the sake of this particular usage and for immediate recognition; these letters are now in almost universal use with the present meaning GG14-10
- the relation of order between integers, the unary operation of absolute value formation for integers, and the unary operation of negation of integers are simply and explicitly definable as follows:
- order
$\mathrm{m}<\mathrm{n} \Leftrightarrow \mathrm{m} \in \mathrm{n}$
$-\mathrm{m}<\mathrm{n}$ $(\mathrm{m} \neq 0)$
$-\mathrm{m}<-\mathrm{n} \Leftrightarrow \mathrm{n} \in \mathrm{m}$
($\mathrm{m} \neq 0 \neq \mathrm{n}$)
wh $\mathrm{m}, \mathrm{n} \in$ nonneg int
- absolute value
$|\mathrm{n}|=\mathrm{n}$
$|-\mathrm{n}|=\mathrm{n} \quad(\mathrm{n} \neq 0)$
wh $n \in$ nonneg int
- negation
$-0=0$
$-\mathrm{n}=\neg \mathrm{n} \quad(\mathrm{n} \neq 0)$
$-(\neg \mathrm{n})=\mathrm{n} \quad(\mathrm{n} \neq 0)$
wh $n \in$ nonneg int
GG14-11
- the customary recursive definitions of addition and multiplication for nonnegative integers are:
rec def of addition for nonnegative integers
$\mathrm{m}+0=\mathrm{m}$
$\mathrm{m}+\mathrm{n}^{+}=(\mathrm{m}+\mathrm{n})^{+}$
wh $\mathrm{m}, \mathrm{n} \in$ nonneg int var
rec def of multiplication for nonnegative integers
$\mathrm{m} \cdot 0=0$
$\mathrm{m} \cdot \mathrm{n}^{+}=(\mathrm{m} \cdot \mathrm{n})+\mathrm{m}$
wh $\mathrm{m}, \mathrm{n} \in$ nonneg int var
- the binary operations of addition and multiplication for integers are definable by cases
eg
$(-\mathrm{m})+(-\mathrm{n})=-(\mathrm{m}+\mathrm{n})$
\&
$(-\mathrm{m})(-\mathrm{n})=\mathrm{mn}$
wh $\mathrm{m}, \mathrm{n} \in$ nonneg int
- the binary operation of
subtraction for integers
is definable explicitly
ito addition and negation for integers
viz
$\mathrm{m}-\mathrm{n}=\mathrm{m}+(-\mathrm{n})$

GG14-13

- the partial binary operation of division for integers occupies a special position
since division by zero is not defined (nor even sensibly definable)
and since two integers (quotient and remainder) result from the operation of division for integers;
division for integers is ring division;
division
for rational numbers,
for real numbers, and
for complex numbers
in which only a single number, the quotient, results is field division

GG14-14

- division for integers
q is the (integer) quotient
and
r is the (nonnegative integer) remainder
for the division of
the dividend m
divided by
the divisor $\mathrm{n} \neq 0$
means by definition
$\mathrm{m}=\mathrm{nq}+\mathrm{r}(0 \leq \mathrm{r}<|\mathrm{n}|)$
wh m, n, $\mathrm{q}, \mathrm{r} \in \mathrm{int}$;
for this definition to be meaningful,
a unique existence theorem for q and r must be proved

GG14-15

