An Esthetic/Philosophical Appreciation of the Biggest Little Formula in Mathematics:
e to the πi power plus 1 equals 0
\#11 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press
PVD RI
2000

GG11-1 (33)
© 2000 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG11-2
\square one of the most pleasing little formulas in mathematics and one with almost mystical overtones is

Euler's epic epiphany equality
$\mathrm{e}^{\pi \mathrm{i}}+1=0$
'ee to the pi eye plus one equals zero'

```
epiphany
= pr ee-PIF-uh-nee
\(=\mathrm{df}\) a sudden insightful manifestation/perception/revelation
```

the first three letters of the words epic \& epiphany can be discerned in the first three symbols $\mathrm{e}^{\pi \mathrm{i}}$
of the formula
$e^{\pi i}+1=0$
since p is the English equivalent of the Greek π

GG11-3
\square this little formula
$e^{\pi \mathrm{i}}+1=0$
in spite of its short length, is one of the most remarkably
comprehensive and representative formulas in mathematics
the formula
$e^{\pi \mathrm{i}}+1=0$
beautifully and dramatically displays in brief compass

- the unity of mathematics
\&
- the interdependence of the branches of mathematics
consider the following facts about the formula $e^{\pi \mathrm{i}}+1=0$

GG11-4
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$
first appeared in pioneering work by
Leonhard Euler
$=$ one of the great mathematicians of all time
Euler $=$ pr OI-ler
the formula $e^{\pi i}+1=0$
was first published in 1748 , two \& a half centuries ago
of the three letters e, i, π in the formula $e^{\pi i}+1=0$
Euler introduced the letters e and i in their present sense and popularized the letter π in its present sense
thus the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ represents

- the history of mathematics
\square bioline
Euler, Leonhard
1707-1783
Swiss; spent many years in Germany and Russia algebraist, analyst, geometer, number theorist, probabilist, applied mathematician, calculating prodigy; the most prolific mathematician of all time; the first modern mathematical universalist

GG11-5
\square the formula
$e^{\pi i}+1=0$
is a special case of the general Euler formula
$e^{i z}=\cos z+i \sin z$
which holds for all complex numbers z
to specialize
the more general formula
$e^{i z}=\cos z+i \sin z$
to
the more special formula
$e^{\pi \mathrm{i}}+1=0$
take $\mathrm{z}=\pi$
thus the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ represents the fundamental mathematical processes of - generalization \& specialization
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains the most important \& the most frequently occurring relation in mathematics viz

- equality =
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains the most important \& the most frequently occurring operation in mathematics viz
- addition +
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains
the five most important \& most frequently occurring numbers in mathematics viz
- zero $=0$, one $=1$, eye $=i$, ee $=e, p i=\pi$
the most important integers
- 0,1
the most important imaginary number
- i
the most important transcendental numbers
- e, π

GG11-7
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ represents the three principal branches of mathematcis viz

- algebra, analysis, geometry/topology the various ways in which this representaion occurs are spelled out below
\square in the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ the items the additive identity 0 the multiplicative identity the imaginary unit
the equality relation the addition operation multiplication in the juxtaposition $\quad \pi \mathrm{i}$
exponentiation in the superscription $e^{\pi i}$ are basic notions of
algebra
$=\mathrm{df}$ the study of finitary operations \& relations
thus the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$
represents
- algebra

GG11-8
the items $0,1,=,+$, multiplication, exponentiation are basic notions of
arithmetic
$=\mathrm{df}$ the study of the simpler computations involving the four fundamental binary operations addition, subtraction, multiplication, division applied to integers \& rational numbers mainly \&
the elementary theory of numbers
$=\mathrm{df}$ the study of integers without the use of limit processes ie without analysis
which may be considered to be subbranches of algebra
thus the formula $e^{\pi i}+1=0$
represents

- arithmetic
\&
- the elementary theory of numbers
the imaginary unit i along with
$0,1, \mathrm{e}, \pi,=,+$, multiplication, exponentiation
are basic notions in the complex number system C
which is of fundamental importance in
algebra, analysis, geometry/topology
thus the formula $e^{\pi i}+1=0$
represents
- the complex number system

GG11-09
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$

contains two transcendental numbers e and π

e
= the base of natural logarithms
= the natural logarithm base
$=$ the nat \log base
$=\lim _{\mathrm{h} \rightarrow 0}(1+\mathrm{h})^{\frac{1}{\mathrm{~h}}} \quad$ wh $\mathrm{h} \in$ pos real var
$=\lim _{\mathrm{k} \rightarrow \infty}\left(1+\frac{1}{\mathrm{k}}\right)^{\mathrm{k}}$ wh $\mathrm{k} \in$ pos real var
$=\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{\mathrm{n}}\right)^{\mathrm{n}} \quad$ wh $\mathrm{n} \in$ posint var
$=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots$
$=$ the unique positive real number x such that $\int_{1}^{\mathrm{x}} \frac{1}{\mathrm{t}} \mathrm{dt}=1$
the natural exponential function
e^{x}
has e as base
the natural logarithm function
$\log _{\mathrm{e}} \mathrm{x}$
has e as base

GG11-10

π

= the circle ratio
$=$ the ratio of circumference to diameter for all euclidean circles
$=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots\right)$
$=4 \int_{0}^{1} \sqrt{1-\mathrm{x}^{2}} \mathrm{dx}$
both e and π
are definable ito the limit processes of analysis
$=\mathrm{df}$ the study of limit properties of numbers \& functions of numbers; inp, the study of differentiation \& integration
thus the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ represents

- analysis

GG11-11
\square the value of e to 12 decimal places is $\mathrm{e}=2.718281828459+$
¿ why 12 places?
because the 13th place is occupied by the first 0
there is a nice east-to-remember
but apparently accidental pattern
to the first 15 decimal places of e
viz
$\mathrm{e}=2.7$
$1828 \quad 1828$
$45 \quad 90 \quad 45$
$+$
the value of π to 31 decimal places is
$\pi=3.141592653589793238462643383279$ 5+
¿ why 31 places ?
because the 32 nd place is occupied by the first 0
a mnemonic for π to 31 places, up to the first zero, is to count the letters of words in the paragraph
How I want a drink, alcoholic of course, after the heavy lectures involving quantum mechanics! All of thy geometry, Herr Planck, is fairly hard. You too struggle? Yes, we acquire knowledge daily.
the first sentence is due to Sir James Hopwood Jeans
GG11-12
\square e has been calculated to more than
50 million decimal places (as of 1998)
π has been calculated to more than
206 billion decimal places (as of 1999)
the calculation of a large number of decimal places of e and π may be used as a test for the accuracy/efficiency/speed of a computer
calculation/computation in general and of e and π in particular is based on algorithms
computer science
$=\mathrm{df}$ the study of algorithms
thus the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ represents

- computer science

GG11-13
\square the circle ratio π
has a geometric reference
thus the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$
represents

- geometry
$=\mathrm{df}$ the study of space
[this definition (?) is not satisfactory
because it is not clear how this so-called definition picks out those axiom systems
that we would like to call geometries;
no satisfactory definition of Geometry with a capital gee
has ever been offered to my knowledge
altho each geometry with a little gee is readily definable by the appropriate axiom system]
\square the explanation of the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ leads to the exposition of much and varied mathematics
thus the formula $\mathrm{e}^{\pi i}+1=0$
represents
- mathematics education
$=\mathrm{df}$ the study of how to study mathematics ie how to teach/learn/write/read mathematics
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains
$7=$ a nice prime number
of explicit individual symbols
$0,1, \mathrm{i}, \mathrm{e}, \pi,=,+$
in single occurrence
for the 7 most important mathematical objects and also 2 more implicit contextual symbols
juxtaposition for multiplication
\&
superscription for exponentiation
for good measure
thus the formula $e^{\pi i}+1=0$ contains/represents
- beautiful \& efficient notation

GG11-15
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$
is to be certainly regarded as
beautiful mathematics
here are some philosophical questions
(1) \dot{i} is beauty a necessary or a sufficient condition for mathematical/physical truth ?
(2) more generally

John Keats (1795-1821, English poet)
proclaimed
($\mathrm{B}=\mathrm{T}$) $=\mathrm{K}$
where
$\mathrm{B}=$ beauty
T = truth
K = knowledge
in the following passage of his poem
'Ode on a Grecian Urn' (1819)
'Beauty is truth, truth beauty,'- that is all Ye know on earth, and all ye need to know.
$¿$ agree or disagree ?

GG11-16
(3) consider the four-category classification

	beautiful	useful
I	yes	yes
II	yes	no
III	no	yes
IV	no	no

$¿$ is there some mathematics in each category?
¿ how about good mathematics?
¿ the best?
(4) i is the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ useful ?

GG11-17
\square the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$
has suggested thoughts as above on
the unity of mathematics
the diversity of mathematics
the beauty of mathematics
the utility of mathematics
the simplicity of mathematics
the complexity of mathematics
the mystery of mathematics
; they are all -y words !
thus the formula $e^{\pi i}+1=0$
represents

- the philosophy of mathematics
i note that 'philosophy' is a -y word too!

GG11-18
\square It could be argued that the notion of set, represented by the elementhood relation symbol \in, is the most fundamental and the most important notion of mathematics, and that the theory of sets is not suggested by the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$. But, on the other hand, from an historical perspective, the pervasiveness of set theory in mathematics is only about a century old.
Actually, every mathematical object is definable as a set. For example,
$0=\operatorname{df} \varnothing$
$1=\mathrm{df}\{0\}=\{\varnothing\}$
For that matter, it could be argued that the empty set $\varnothing=0$ is the most important set in mathematics. If not the empty set \varnothing, what else? This is an application of the philosophical Principle of Sufficent Reason.
thus the formula $e^{\pi \mathrm{i}}+1=0$
represents

- the theory of sets

GG11-19
\square Other possible gaps in the universality of the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ may be pointed out. For example:

The formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains only constants and no variables altho variables are used in definitions of objects named in the formula.

The formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains no general function sign such as $f(x)$ altho the particular binary functions of addition, multiplication, exponentiation occur in the formula.

The formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains no derivative or integral altho e and π are defined by limit processes, and derivative and integral are also defined by limit processes. The numbers e and π may be characterized elegantly in calculus using derivatives/ integrals.

The formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains no symbol from logic such as that for a propositional operation or a quantifier altho equality $=$ is often thought of as a logical notion, and logic can be considered to be a special subbranch of algebra.

The formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ contains no explicit reference to topology altho geometry could be stretched a bit to encompass topology or vice versa depending on how you like to stretch a point. Topology could be briefly defined as the study of the abstract notion of limit, and the formula suggests limit processes in e and π.

GG11-20
\square It is clear that the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ represents mathematics ie pure mathematics $=$ core mathematics in many ways. How, if at all, does the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ represent applied mathematics beyond the suggested algorithmic computation of e and π ? Of course, the individual symbols in the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$ occur thruout mathematics, pure and applied. Here are two examples of particularly interesting occurrences of π, one occurrence in the theory of probability and the other occurrence in physics.

GG11-21

The number π can occur in the theory of probability eg π occurs in
the Buffon needle problem/theorem/experiment.
Let a homogeneous thin straight needle of length L units be dropped at random on a flat horizontal table that is evenly scored by parallel straight lines consecutively separated by D units where $\mathrm{D} \geq \mathrm{L}$. Then it can be calculated/observed that the probability of the needle falling on a line is
2L
$\pi \mathrm{D}$

The number π can occur in particle physics
eg π occurs in
the Heisenberg indeterminacy/uncertainty principle/relation

$$
\Delta \mathrm{x} \times \Delta \mathrm{p} \geq \frac{\mathrm{h}}{4 \pi}
$$

where
$\mathrm{x}=$ position
$\mathrm{p}=$ momentum
$\mathrm{h}=$ Planck's constant $=$ the (elementary) quantum of action
$=$ the ratio of the energy of a photon to its frequency
$\Delta=$ the error in the measurement of
GG11-22
\square The ultimate formula/symbol for everything is yet to be found, no doubt. Does it exist? Does it lurk in the formula $\mathrm{e}^{\pi \mathrm{i}}+1=0$? How about the elementhood sign \in ? It could be argued that
$\in=\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \in \mathrm{y}\}$
where x and y are set variables. If any mathematical statement can be reduced in principle to statements of the form $\mathrm{x} \in \mathrm{y}$ that are combined by the use of logical symbols say those from the lower predicate calculus, then it appears that the class \in contains all mathematical knowledge. The big problem is how to access it.
\square a mathematical palindrome
Q. ¿ what is your favorite transcendental number ?
A. i prefer pi
thus the formula $e^{\pi i}+1=0$
represents

- mathematical humor

GG11-23
\square a strictly mathematical note
to prove Euler's formula
$\mathrm{e}^{\mathrm{i} \mathrm{z}}=\cos \mathrm{z}+\mathrm{i} \sin \mathrm{z} \quad(\forall \mathrm{z} \in \mathbb{C})$
appeal to the three everywhere-convergent power series expansions
$\mathrm{e}^{\mathrm{z}}=1+\mathrm{z}+\frac{\mathrm{z}^{2}}{2!}+\frac{\mathrm{z}^{3}}{3!}+\cdots \quad(\forall \mathrm{z} \in \mathbb{C})$
$\cos \mathrm{z}=1-\frac{\mathrm{z}^{2}}{2!}+\frac{\mathrm{z}^{4}}{4!}-\frac{\mathrm{z}^{6}}{6!}+\cdots \quad(\forall \mathrm{z} \in \mathbb{C})$
$\sin \mathrm{z}=\mathrm{z}-\frac{\mathrm{z}^{3}}{3!}+\frac{\mathrm{z}^{5}}{5!}-\frac{\mathrm{z}^{7}}{7!}+\cdots \quad(\forall \mathrm{z} \in \mathbb{C})$
these series could be regarded as theorems for a real variable and
definitions for a complex variable

GG11-24
\square curiouser and curiouser formulas
the phrase 'curiouser and curiouser' was said by Alice in the book
'Alice's Adventures in Wonderland' (1865)
which was written by Lewis Carroll
$=$ a mathematican with the mundane name of
Charles Lutwidge Dodgson
1832-1898
English
writer, mathematics don at Oxford University
$i^{i}=e^{-\frac{\pi}{2}} \quad(p v)$
Georgie Porgie said 'Hi!
The principal ith power of i
Is the number e to
Minus π over 2
But I cannot begin to tell why.'
$\sqrt[i]{i}=e^{\frac{\pi}{2}} \quad(p v)$
Georgie Porgie said 'Hi!
The principal ith root of i
Is the number e to
Plus π over 2
But I cannot begin to tell why.'
GG11-25
each Georgie Porgie formula may be transformed into the other
by taking the minus one power
of each side of the equation
the last line of the limericks is ambiguous
if Georgie Porgie does know the mathematical proof but feels it is too complicated to be said briefly say, then the following discussion is what he could tell
if Georgie Porgie does not know the mathematical proof, then the following discussion is what he could be told
N. real \& complex variables
$\mathrm{x}, \mathrm{y}, \mathrm{u}, \mathrm{v} \in$ real var
$\mathrm{z}, \mathrm{w} \in$ complex var
$x+i y=z$
$u+i v=w$
note that $\mathrm{u}, \mathrm{v}, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ are the last six letters of the alphabet in alphabetic order
D. the absolute value of a complex number the absolute value of z
$=\mathrm{dn}|\mathrm{z}|$
$=\mathrm{rd}$ absolute $\mathrm{z}=\mathrm{z}$ absolute
$=\mathrm{df} \sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}} \geq 0$
D. the angle of a nonzero complex number the angle of z
$=\mathrm{dn}$ ang z
$=\mathrm{rd}$ angle z
$=\mathrm{df} \tan ^{-1} \frac{y}{x} \in \mathrm{Qz}$

geometric picture \& interpretation of the absolute value $|z|$
\&
of the angle ang z of a complex number $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$

GG11-28
D. complex logarithm
w is the (complex) (natural) logarithm of z (to the base e) $(\mathrm{z} \neq 0)$
$=\mathrm{df} \mathrm{z}=\mathrm{e}^{\mathrm{w}}$
$=e^{u+i v}$
$=e^{u} e^{i v}$
$=\mathrm{e}^{\mathrm{u}}(\cos \mathrm{v}+\mathrm{i} \sin \mathrm{v})$
$=e^{\mathrm{u}} \cos \mathrm{v}+\mathrm{e}^{\mathrm{u}} \sin \mathrm{v}$
\&
therefore

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=e^{u} \cos v \\
y=e^{u} \sin v
\end{array}\right. \\
& \left\{\begin{array}{l}
u=\ln \sqrt{x^{2}+y^{2}} \\
v=\tan ^{-1} \frac{y}{x} \in Q(x, y)
\end{array}\right.
\end{aligned}
$$

$\log \mathrm{z}=\ln |\mathrm{z}|+\mathrm{i} \operatorname{ang} \mathrm{z}$

GG11-29
D. complex power
the complex power with base z and with exponent w
$=$ the w power of z
$=\mathrm{dn} \mathrm{z}^{\mathrm{w}}$
$=\mathrm{rd} \mathrm{z}$ to the w (power)
$=d f e^{\mathrm{w} \log \mathrm{z}}$
D. complex radical / root
the complex radical / root with radicand z and with index w
$=$ the w root of z
$=\mathrm{dn} \sqrt[\mathrm{W}]{\mathrm{Z}}$
$=$ rd $\mathrm{w} \operatorname{root}(\mathrm{of}) \mathrm{z}$
$=\operatorname{df} z^{\frac{1}{w}}$

GG11-30
R. the little Euler formula \& the two Georgie Porgie formulas
$e^{\pi i}+1=0$
$\mathrm{i}^{\mathrm{i}}=\mathrm{e}^{-\frac{\pi}{2}}$
$\sqrt[i]{i}=e^{\frac{\pi}{2}}$
are all three readily derivable from each other and so
they are pairwise equivalent in that sense
direct derivations of the Georgie Porgie formulas follow below

GG11-31

$$
\begin{aligned}
& |\mathrm{i}|=1 \\
& \operatorname{ang} \mathrm{i}=\frac{\pi}{2}+2 \pi \mathrm{n} \quad(\mathrm{n} \in \mathrm{int}) \\
& \log \mathrm{i}=\ln |\mathrm{i}|+\mathrm{iang} \mathrm{i}=\ln 1+\mathrm{i}\left(\frac{\pi}{2}+2 \pi \mathrm{n}\right)=\mathrm{i}\left(\frac{\pi}{2}+2 \pi \mathrm{n}\right) \\
& \mathrm{i}^{\mathrm{i}}=\mathrm{e}^{\mathrm{i} \log \mathrm{i}}=\mathrm{e}^{-\frac{\pi}{2}+2 \pi \mathrm{n}} \\
& \therefore \mathrm{i}^{\mathrm{i}}=\mathrm{e}^{-\frac{\pi}{2}} \quad(\mathrm{pv}) \\
& \dot{\mathrm{i}} \mathrm{i}=\mathrm{i}^{\frac{1}{\mathrm{i}}}=\mathrm{i}^{-\mathrm{i}}=\mathrm{e}^{-\mathrm{i} \log \mathrm{i}}=\mathrm{e}^{\frac{\pi}{2}+2 \pi n} \\
& \therefore \dot{\mathrm{i}} \mathrm{i}=\mathrm{e}^{\frac{\pi}{2}} \quad(\mathrm{pv}) \\
& \mathrm{pv}=\mathrm{df} \text { principal value }
\end{aligned}
$$

GG11-32

\square coda

a complimentary complement
a superlative supplement a summery summation an endearing endpoint
a ding-a-ling Ding an sich (German) $=$ lit: thing-in-itself
$\mathrm{e}^{\pi \mathrm{i}}+1=0$
'Ee to the pie eye plus won
Goes poof' is a benison
For it wraps up a lot
In a very small spot
And proves math is always great fun.

