Theme \& Variations: Defining a Group

\#100 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press
PVD RI
2003

GG100-1 (26)
© 2003 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge
to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG100-2

C. the notion of group,
which is basic and of central importance in mathematics, is here defined with full detail
in 19 equivalent ways; commentary abounds

D1. groups

a group
$=_{\text {df }}$ an ordered quadruple
$\mathrm{G}=(\mathrm{G}, \mathrm{e}, *, \circ)$
st
the following four axioms are satisfied:

GG100-4
(0) generic axiom
(01) $\mathrm{G} \in$ set
wh $G={ }_{c l}$ the prop of G
(02) e $\in G$
wh e $=_{c l}$ the identity (element) of G
(03) $*: \mathrm{G} \rightarrow \mathrm{G} \in$ unary operation in G

$$
\mathrm{x} \mapsto \mathrm{x} *
$$

wh $*=_{r d}$ star $={ }_{c l}$ the stellation of G
$\& \mathrm{X} *=_{\mathrm{rd}} \mathrm{x}$ star $=_{\mathrm{cl}}$ the stellate of x
(04) $\circ: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G} \in$ binary operation in G

$$
(\mathrm{x}, \mathrm{y}) \mapsto \mathrm{x} \circ \mathrm{y}
$$

wh $\circ==_{\mathrm{rd}}$ oh / op $=_{\mathrm{cl}}$ the composition of G
$\& \mathrm{x} \circ \mathrm{y}=_{\mathrm{rd}} \mathrm{x}$ oh / op $\mathrm{y}==_{\mathrm{cl}}$ the composite of x and y

GG100-5
(1) bilateral identity axiom for composition

- e \in bilateral identity for composition
$=_{d f} \mathrm{x} \circ \mathrm{e}=\mathrm{x}=\mathrm{e} \circ \mathrm{x}(\mathrm{x} \in \mathrm{G})$
(2) bilateral inverse axiom for composition
- stellation \in bilateral inversion for composition
$\left.=_{\mathrm{df}} \mathrm{x} \circ \mathrm{x}^{*}=\mathrm{e}=\mathrm{x} * \mathrm{ox}^{(\mathrm{x}} \in \mathrm{G}\right)$
(3) associative axiom for composition
- composition \in associative
$=_{d f}(\mathrm{x} \circ \mathrm{y}) \circ \mathrm{z}=\mathrm{x} \circ(\mathrm{y} \circ \mathrm{z})(\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{G})$

GG100-6

D2. groups
obtain D2 from D1 by changing D1 as follows: in axioms (1) \& (2) of D1
replace the word 'bilateral' by the word 'right' \& omit the right hand parts of the equations

D3. groups
obtain D3 from D1 by changing D1 as follows: in axioms (1) \& (2) of D1
replace the word ' bilateral' by the word 'left' \& omit the left hand parts of the equations

GG100-7

D4. groups
a group
$={ }_{\mathrm{df}}$ an ordered pair
$巴=(\mathrm{G}, \circ)$
st
the following three axioms are satisfied:

GG100-8
(0) generic axiom
(01) $\mathrm{G} \in$ set
wh $G={ }_{c l}$ the prop of G
(02) $\circ: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G} \in$ binary operation in G

$$
(\mathrm{x}, \mathrm{y}) \mapsto \mathrm{x} \circ \mathrm{y}
$$

wh $\circ==_{\mathrm{rd}}$ oh / op $=_{\mathrm{cl}}$ the composition of G
$\& \mathrm{x} \circ \mathrm{y}=_{\mathrm{rd}} \mathrm{x}$ oh / op $\mathrm{y}=_{\mathrm{cl}}$ the composite of x and y
(1) associative axiom for composition

- composition \in associative
$=_{d f}(x \circ y) \circ z=x \circ(y \circ z) \quad(x, y, z \in G)$
(2) bilateral identity - inverse existential axiom for composition
- composition has a bilateral identity st each element has a bilateral inverse
$={ }_{\mathrm{df}} \exists \mathrm{e} \in \mathrm{G} .(\forall \mathrm{x} \in \mathrm{G} . \mathrm{x} \circ \mathrm{e}=\mathrm{x}=\mathrm{e} \circ \mathrm{x})$
$\&\left(\forall \mathrm{x} \in \mathrm{G} . \exists \mathrm{x}^{*} \in \mathrm{G} . \mathrm{x} \circ \mathrm{x}^{*}=\mathrm{e}=\mathrm{x} * \circ \mathrm{x}\right)$

D5. groups
obtain D5 from D4 by changing D4 as follows: in axiom (2) of D4
replace the word 'bilateral' by the word 'right' \& omit the right hand parts of the equations

D6. groups
obtain D6 from D4 by changing D4 as follows: in axiom (2) of D4
replace the word ' bilateral' by the word 'left' \& omit the left hand parts of the equations

D7. groups

obtain D7 from D4 by changing D4 as follows:
replace the line in D4
(01) $\mathrm{G} \in$ set
by the line
(01) $G \in$ nonempty set
replace axiom (2) in D 4 by the axiom
(2) bilateral solubility - existential axiom
for composition

- simple composite equations in one unknown \in soluble
$=_{\mathrm{df}} \forall \mathrm{a}, \mathrm{b} \in \mathrm{G} . \exists \mathrm{x}, \mathrm{y} \in \mathrm{G} . \mathrm{a} \circ \mathrm{x}=\mathrm{b} \& \mathrm{y} \circ \mathrm{a}=\mathrm{b}$

D8/9/10. groups
a group
$={ }_{\text {df }}$ an associative groupoid
with bilateral / right / left identity element
st every element is bilaterally / right / left invertible

D11/12/13. groups
a group
$={ }_{\mathrm{df}}$ a semigroup
with bilateral / right / left identity element
st every element is bilaterally / right / left invertible

D14/15/16. groups
a group
$={ }_{\mathrm{df}}$ a bilateral / right / left monoid
st every element is bilaterally / right / left invertible

D17. groups
a group
$=_{d f}$ a nonempty semigroup
st all simple equations in one unknown are soluble
GG100-12

D18. additive groups

an additive group
$=_{\mathrm{df}}$ an ordered quadruple
$G=(G, 0,-,+)$
st the following four axioms are satisfied:

GG100-13
(0) generic axiom
(01) $\mathrm{G} \in$ set
wh $G={ }_{c l}$ the prop of G
(02) $0 \in \mathrm{G}$
wh $0==_{\mathrm{rd}}$ oh / zero $=_{\mathrm{cl}}$ the zero (element) of \mathcal{G}
(03) $-: \mathrm{G} \rightarrow \mathrm{G} \in$ unary operation in G $\mathrm{x} \mapsto-\mathrm{x}$
wh $-=_{\mathrm{rd}}$ minus $=_{\mathrm{cl}}$ the negation of \mathcal{G}
$\&-\mathrm{x}={ }_{\mathrm{rd}}$ minus $\mathrm{x}={ }_{\mathrm{cl}}$ the negate of x
(04) $+: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G} \in$ binary operation in G

$$
(\mathrm{x}, \mathrm{y}) \mapsto \mathrm{x}+\mathrm{y}
$$

wh $+=_{r d}$ plus $=_{c l}$ the addition of \mathcal{G}
$\& \mathrm{x}+\mathrm{y}=_{\mathrm{rd}} \mathrm{x}$ plus $\mathrm{y}={ }_{\mathrm{cl}}$ the sum of x and y

GG100-14
(1) bilateral identity axiom for addition

- $0 \in$ bilateral identity for addition
$={ }_{\mathrm{df}} \mathrm{x}+0=\mathrm{x}=0+\mathrm{x} \quad(\mathrm{x} \in \mathrm{G})$
(2) bilateral inverse axiom for addition
- negation \in bilateral inversion for addition
$=_{\mathrm{df}} \mathrm{x}+(-\mathrm{x})=0=(-\mathrm{x})+\mathrm{x} \quad(\mathrm{x} \in \mathrm{G})$
(3) associative axiom for addition
- addition \in associative
$={ }_{d f}(x+y)+z=x+(y+z) \quad(x, y, z \in G)$

GG100-15

D19. multiplicative groups

a multiplicative group
$=_{\mathrm{df}}$ an ordered quadruple
$G=\left(\mathrm{G}, 1,{ }^{-1}, \cdot\right)$
st
the following four axioms are satisfied:

GG100-16
(0) generic axiom
(01) $\mathrm{G} \in \operatorname{set}$
wh $G={ }_{c l}$ the prop of G
(02) $1 \in G$
wh $1={ }_{\mathrm{rd}}$ one / unity $=_{\mathrm{cl}}$ the unity (element) of \mathcal{G}
(03) ${ }^{-1}: \mathrm{G} \rightarrow \mathrm{G} \in$ unary operation in G

$$
\mathrm{x} \mapsto \mathrm{x}^{-1}
$$

$w h^{-1}=_{\text {rd }}$ recip /inverse
$=_{\mathrm{cl}}$ the reciprocation / inversion of \mathcal{G}
$\& x^{-1}=_{r d} \quad x$ recip / inverse
$=_{\mathrm{cl}}$ the reciprocal / inverse of x
(04) $:: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{G} \in$ binary operation in G

$$
(\mathrm{x}, \mathrm{y}) \mapsto \mathrm{x} \cdot \mathrm{y}
$$

wh $\cdot=_{r d}$ times $=_{c l}$ the multiplication of G $\& x \cdot y={ }_{r d} x$ times $y==_{c l}$ the product of x and y
(1) bilateral identity axiom for multiplication

- $1 \in$ bilateral identity for multiplication
$={ }_{\mathrm{df}} \mathrm{x} \cdot 1=\mathrm{x}=1 \cdot \mathrm{x} \quad(\mathrm{x} \in \mathrm{G})$
(2) bilateral inverse axiom for multiplication
- reciprocation \in bilateral inversion for multiplication
$==_{\mathrm{df}} \mathrm{x} \cdot \mathrm{x}^{-1}=1=\mathrm{x}^{-1} \cdot \mathrm{x} \quad(\mathrm{x} \in \mathrm{G})$
(3) associative axiom for multiplication
- multiplication \in associative
$={ }_{\mathrm{df}}(\mathrm{x} \cdot \mathrm{y}) \cdot \mathrm{z}=\mathrm{x} \cdot(\mathrm{y} \cdot \mathrm{z}) \quad(\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{G})$
C. some comments, mathematical and semiphilosophcal, about the definitions of a group
- each of the following five triples

D1/2/3
D4 / $5 / 6$
D8 / 9 / 10
D11/12/13
D14/15/16
differ in regard to
bilateral / right / left identities
matched by
bilateral / right / left inverses;
it turns out that these variations
all amount to the same thing

GG100-19
-D1/2/3
contain no existential quantifiers, only universal quantifiers
\& have four items in the given structure \& have four axioms
-D4 / 5/6/7
contain existential quantifiers
as well as universal quantifiers
\& have two items in the given structure \& have three axioms

- D7 is likely the shortest definition of a group
- D8 thru 17
are all verbally stated definitions
that take less rich algebraic structures
as previousy defined;
the terms of the sequence
groupoid, semigroup, monoid, group have increasingly richer structure

GG100-21

- additive groups and mutiplicative groups

D18 / 19
simply refer to the notation and the terminology, not to the notions or the generality;
D18/19
are variants in notation and terminology
of the 'general' definition D1
with 'general' notation and terminology;
D18 / 19 bring the notions
to words and symbols that are more familiar; however there is no distinction in generality among D1/18 / 19; in practice additive groups are usually used only for abelian groups; multiplicative groups are often used with e instead of 1 denoting the identity element; usually in a multiplicative group juxtaposition $x y$ is used to denote the product $\mathrm{x} \cdot \mathrm{y}$
of the elements x and y
GG100-22

- a group is a nonempty set provided with
a nullary operation
\& a unary operation
\& a binary operation
subject to certain conditions
- the notion of group
is the mathematical embodiment
of the intuitive notion of symmetry;
the notion of ordered set
is the mathematcial embodiment
of the intuitive notion of ranking;
the notion of topological space
is the mathematical embodiment
of the intuitive notion of nearness;
together these three notions of
group, ordered set, topological space,
with their
specializations \& generalizations \& combinations, cover the mathematical landscape

GG100-23
C. generic axiom

- the generic axiom is suggested as the first axiom of an axiom system;
it specifies the kind ie 'genus' of each object named as part of the original structure but says no more;
it replaces the closure axiom / axioms of an earlier version of axiom systems
- the word 'prop' has the sense of base, basis, carrier, foundation, support; a new word seemed in order
C. words \& symbols
- the word in various languages group (English)
$=$ le groupe (French)
= die Gruppe (German)
= il gruppo (Italian)
$=$ el grupo (Spanish)
- the word group (groupe)
was first used by Galois in 1830
- $\mathcal{G}, \mathrm{G} \leftarrow$ group
- e \leftarrow the German noun die Einheit $=$ oneness, unity
- Cayley introduced the righthand superscript -1 for the inverse in 1844

GG100-25
C. the abstract notion of group
took a long time to crystalize;
first considerations
that turned out to be related to groups
were devoted to
the study of permutations of finite sets
eg the roots of a polynomial equation; involved were

Lagrange (ca 1770)
Galois (ca 1830) (particularly)
Cayley (ca 1844)
\& others;
a clear simple statement of the abstract group axioms took many mathematicians
and most of the 19th century to develop
and was successfully realized in the early 20th century

GG100-26

