Abbreviations for Mathematics General Rules

#6 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2000

GG6-1 (44)

© 2000 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

□ comment the following rules of abbreviation of words and phrases for mathematical use fall into two categories, general rules and special rules; a general rule is a guideline that seems to be helpful most if not all of the time when seeking how to abbreviate in a given instance, assuming the general rule is relevant at all; special rules apply to particular classes of words or phrases and usually provide specific abbreviations if relevant: it is possible, indeed usual, that several rules can apply to a single word or phrase with perhaps different results; it will happen that certain different words or phrases receive the same abbreviation according to the rules; what rule is to be applied to what word or phrase and what any abbreviation means depend on consensual agreement & usage, personal choice, and context; an abbreviation should likely and usually be read as the word or phrase it stands for; exceptions in the form of reading letter by letter or phonetically appear to be relatively rare in mathematical practice; for exceptional examples think of AMS, mks system, NP complete, info, trig; I see no sensible universal algorithm in the abbreviation of words and phrases for mathematical use; as has been remarked. usage is the law of language, not logic; and the natural language used in mathematics is no exception; necessarily & obviously, examples of abbreviations given here are samples only

• How can I abbreviate? Let me count the ways. (iho EBB)

general rule
 use the standard
 logical/mathematical symbols
 to serve as abbreviations of the words and phrases
 that constitute their readings;
 sometimes the job of abbreviation
 can be taken over by denotation

examples:

•	and	.&
•	there exists	.Ξ
•	six	6
•	logarithm	.log
•	plus	+
•	infinity	.∞
•	is less than	<
•	is perpendicular to	⊥

□ general rule use standard Latin abbreviations

examples:

- circa.....ca
 lit: about
- et alii (masc)
 et aliae (fem)
 et alia (neut)et al
 = lit: and others
- et cetera.....etc
 = lit: and others
 = and so on
- exempli gratia.....eg
 lit: for sake of example
 for example
- id est.....ie
- = lit: that is

- quod erat demonstrandum.....qed/QED
- = lit: which was to be proved
- versus.....vslit: against
- videlicet.....viz
 lit: it is permitted to see
 namely
 (note: the z in viz
 is from Medieval Latin
 shorthand for 'et')

□ general rule usually 2-letter words & 3-letter words are not to be abbreviated

examples:

- by, in, of, on, to, up
- arc, box, for, let, map, set

exceptions:

at	@
is / are	∈
no, not	.¬
or	\vee
add	+
and	&

□ comment the elementhood sign \in is a stylized lowercase Greek letter epsilon; it comes from the initial letter of the Greek word $\varepsilon \sigma \tau \iota$ which means 'is'; note the resemblance to the Latin word 'est' for 'is'; our elementhood sign then originally meant 'is'; ¿ how is that related to the present-day meaning of 'is an element of'? let 'x is prime' be symbolized by 'x \in prime'; if we think of 'prime' as denoting the set of all prime numbers, then ' $x \in$ prime' can be read equivalently as 'x is an element of the set of all prime numbers' which is what we now see in \in ; again, let 'x is an integer' be symbolized by 'x \in integer'; if we think of 'integer' as denoting the set of all integers, then 'x \in integer' can be read equivalently as 'x is an element of the set of all integers' which is what we now see in \in

□ general rule 4-letter compound prepositions such as

• into, onto, upon

and some other 4-letter words such as

• form, game, knot, ring, than, then, over

may escape abbreviation; the operator

• curl

is not to be abbreviated

□ general rule
usually
the indefinite article 'a/an' &
the definite article 'the'
are to be omittted from indication
in the abbreviation of a phrase
examples:
 there exists a sequence such that∃ seq st
 the mean value theoremMVT
• x is the abscissa and y is the ordinatex \in abs & y \in ord

general rule
 to pluralize an abbreviation,
 suffix s rather than apostrophe s

examples:

- line, lines.....ln,lns
- point, points.....pt, pts
- mean value theorem, mean value theorems......MVT, MVTs

note: if possible, use the singular form also for the plural form, depending on context to clarify

note: in traditional scholarly usage doubling the last letter of the abbreviation pluralizes eg page, pages......p, pp manuscript, manuscripts......MS, MSS □ general rule usually punctuation marks should not be used in an abbreviation

examples:

- Rolle's theorem.....RT
- Fermat's last theorem......FLT
- principal-valued inverse function......pv inv fcn

exceptions:

 section headings as T. for Theorem.
 use periods

the slash / may appear
in abbreviations
as for instance
6 m/h for six miles per hour

□ general rule in word abbreviations it may be possible to fail to distinguish among parts of speech as noun (singular/plural), verb. adjective, adverb belonging to the same root and to depend on the context to clarify the meaning eg abbreviate

maximum maxima maximize maximizes maximizing maximized maximal maximally

each as

max

□ general rule usually an abbreviation is written all in lowercase letters or all in capital letters

examples:

- mathematics.....math
- the prime number theorem......PNT
- necessary and sufficient condition.....nasc/NASC

note: whether an abbreviation is written all in lower case letters or all in upper case letters is often a case of personal taste

□ general rule an abbreviation of a word should begin with the first letter of the word

examples:

- page.....p
- axis.....ax
- cardinal.....crd
- perpendicular.....perp
- homeomorphism.....homeo
- interpretation.....interp

exception:

inflection.....flex

□ general rule usually in an abbreviation consonants are to be preferred to vowels because consonants carry more information than vowels; in the English alphabet of 26 letters there are 20 consonants & there are 6 vowel letters, a ratio of better than three to one

□ general rule some abbreviations may serve as function signs and operators & vice versa

examples:

 differentiald
derivativeD
• gudermanniangd
 identityid
 injectionin
 projectionpr
• divergencediv
• laplacianlap
• signumsgn

exponentialexp
 logarithmlog
• sinesin etc
${\scriptstyle \bullet}$ inverse sinesin $^{-1}$ etc
• principal-valued inverse sineSin $^{-1}$ etc
 hyperbolic sinesinh etc
- inverse hyperbolic sinesinh^{-1} etc
• principal-valued inverse hyperbolic sineSinh ⁻¹

• principal-v etc □ general rule use the slash / to stand for a conjunction or a preposition from the following list, its meaning depending on the context: and, or, and/or, xor, by, for, from, in, of, on, over, per, etc

examples:

- probability and statistics.....prob/stat
- positive or negative.....pos/neg
- pearls of Sluze.....pearls/Sluze
- roses of Grandi.....roses/Grandi
- miles per hour.....m/h
- Calculus was discovered/invented by Newton/England & Leibniz/Germany.

□ general rule

to abbreviate the names of theorems, use the capitalized first letters of the principal words

examples:

 the Pythagorean theorem 	.PT
• the fundamental theorem of calculus	.FTC
Rolle's theorem	.RT
the intermediate value theorem	.IVT
the mean value theorem	.MVT
 the mean value theorem for derivatives 	.MVTD
 the mean value theorem for integrals 	MVTI
 the Cauchy integral theorem 	CIT

• the fundamental theorem of algebra	FTA
 the fundamental theorem of Galois theory 	FTGT
 the fundamental lemma of the calculus of variations 	FLCV
the Chinese remainder theorem	CRT
the prime number theorem	PNT
Fermat's last theorem	FLT
Hilbert's Nullstellensatz	HN (HNSS)

general rule to abbreviate a phrase, use the first letters of all the words

examples:

left hand	LH
• right hand	.RH
left-hand side	LHS
 right-hand side 	RHS
quadratic formula	QF
arithmetic mean	AM
• geometric mean	GM
harmonic mean	НМ
arithmetic-geometric mean	AGM
law of sines	LOS
law of cosines	LOC

• chain rule	CR
differential equation(s)	DE
 ordinary differential equation(s) 	ODE
partial differential equation(s)	PDE
center of curvature	COC
center of gravity	COG
center of mass	COM
center of pressure	COP
center of symmetry	COS
absolutely continuous	AC
bounded variation	BV
Cauchy ratio test	CRT
Cauchy-Riemann equations	CRE
Cauchy-Schwartz inequality	CSI

Laurent series expansionLSE
power series expansionPSE
Fourier seriesFS
Fourier transformFT
fast Fourier transformFFT
• cosine seriesCS
• sine seriesSS
harmonic seriesHS
 boundary value problem(s)BVP
 finite intersection propertyFIP
finite union propertyFUP
Euler characteristicEC
• root mean squareRMS
 right ascensionRA

ascending chain condition	ACC
descending chain condition	DCC
• euclidean domain	ED
principal ideal domain	PID
unique factorization domain	UFD
domain of individuals	.DOI
lower predicate calculus	.LPC
higher predicate calculus	.HPC
first-order logic	.FOL
nondeterministic polynomial	NP
theory of everything	TOE
Common Era	.CE
point of view	.POV
exceedingly simple proof	.ESP
 the proof is completed GG6-26 	.TPIC

angle side angle	asa
• side angle side	sas
• side side angle	ssa
side side	SSS
almost everywhere	ae
• also known as	aka
finite linear combination	flc
• if it exists	iie
• if they exist	ite
in other symbols	ios
• in other words	iow
• in terms of	ito
it is enuf to prove	iietp
necessary and sufficient	nas
 necessary and sufficient condition GG6-27 	nasc

prime factorization	pf
reflexive symmetric transitive	rst
revolutions per minute	rpm
standard deviation	sd
standard error	se
such that	st
• that are	ta
• that is	ti
the following statements are equivalent	tfsae
 the following statements are pairwise equivalent 	tfsape
• which are	wa
• which is	wi
without loss of generality	wlog
 with respect to GG6-28 	wrt

general rule
 to abbreviate a phrase,
 abbreviate all/some words of the phrase individually

examples:

- absolute value.....abs val
- noneuclidean geometry.....noneuc geom
- principal-valued inverse function......pv inv fcn
- the indefinite integral.....indef int
- take the second derivative.....take 2nd der
- apply the method of Lagrange multipliers.....apply MLM
- before the Common Era.....BCE

□ general rule to form an abbreviated one-word heading, use the capitalized first letter with period

examples:

- Definition. = D.
- Theorem. = T.
- Proof. = P.
- Remark. = R.
- Lemma. = L.
- Example. = E.
- Notation. = N.
- Comment. = C.
- Question. = Q.
- Bibliography. = B.
- etc

(a Remark is something that is worth saying but which requires little or no explicit proof; it is understood that Notation includes terminology, words being symbols too)

also

- Corollary. = Cor.
 Historical Note. = HN.
 Geometric Interpretation. = GI.
 Little Lemma. = LL. (a little lemma is a lemma that requires little or no proof)
 Standing Hypothesis. = SH.
- etc

```
general rule
use equaters
where an equater is a linguistic object
consisting of a combination
of the equality sign =
and
of a few lower case letters as suffix or subscript;
an equater stands for a standard phrase
that suggests some kind of equality
or close connection
eg
the (specific) definer
```

```
= df
```

is defined to be/mean

the recursive definer
dr
is defined recursively as follows

• the conditional definer

= dfc

is defined by the following condition(s)

```
the implicit definer
= di
is defined implicitly as follows
```

```
the announcing definer
= daf
is defined as follows
```

```
the denoter
= dn
is denoted (by)
```

```
the caller
cl
is called
```

```
the reader
rd
is read (as)
```

```
the writer
wr
is written (as)
```

```
the abbreviater
ab
abbreviated (as/by)
```

```
the pronouncer
pr
is pronounced (as)
```

```
the translater
tr
is translated (as)
```

```
the existential isomorpher
is isomorphic to/with
```

```
• the canonical isomorpher
```

```
= ci
```

```
is canonically isomorphic to/with
```

```
    the measurer
    m
    is measured (as)
    has measure
```

```
the degree measurer
= dm
has degree meassure
```

```
    the radian measurer
    rm
    has radian measure
```

```
the estimater
es
```

```
is estimated (about/as/at/to be)
```

```
• etc
```

note: plural LHS require plural verbs 'are' and 'have'

□ comment the manufactured word 'equater' was suggested by the idea of that which equates = that which makes equal; these linguistic objects, the equaters, seem to represent various kinds of 'equality'; the uniform ending -er of 'equater' and the names of the equaters has been deliberately chosen for the sake of ready unification and identification altho dictionary spellings have variously -er or -or; there is also the pun with 'equator'; sometimes when it is clear which equater is to be used, the affix or subscript letters may be omitted and the equality sign alone may be used; this has been a frequent practice anyway before equaters made the scene

```
□ general rule
use the questioner
ie
place a question mark
above the relation sign R in a relationship aRb
to denote the question
¿ is it the case that a bears the relation R to b ?
eg
?
a = b
means
¿ is a equal to b? = ¿ does a equal b ?
?
a sometimes alternative interpretation of a = b
would be:
there is some evidence that a = b
but it is not conclusive
```

□ general rule
use
the assignment/evaluation/replacement/substitution operator
= the assigner/evaluator/replacer/substituter
:=

x := a means all of these synonymous commands:

x is assigned the value a

assign x the value a

x is given the value a

give x the value a

x is replaced by a

replace x by a

a replaces x

a is substituted for x

substitute a for x

```
□ one-letter denotations of powers of ten
```

• C = one hundred = 100 $=10^{2}$ wh C is the capitalized initial letter of the Latin word 'centum' meaning 'hundred' • K = one thousand = 1000 $=10^{3}$ wh K is the capitalized initial letter of the French prefix 'kilo-' meaning 'thousand' which comes from the Greek word $\chi\iota\lambda\iotao\iota$ meaning 'thousand'

```
• M
= one million
= 1,000,000
=10^{6}
wh
M is the capitalized initial letter
of the word 'million'
• B
= one billion
= 1,000,000,000
=10^{9}
wh
B is the capitalized initial letter
of the word 'billion'
• T
= one trillion
= 1,000,000,000,000
=10^{12}
wh
T is the capitalized initial letter
of the word 'trillion'
```

```
    Q
    = one quadrillion
    = 1,000,000,000,000,000
    = 10<sup>15</sup>
wh
    Q is the capitalized initial letter
of the word 'quadrillion'
```

```
• Q′
```

```
= one quintillion
```

```
= 1,000,000,000,000,000,000
```

```
=10^{18}
```

wh

```
\mathbf{Q}' is the primed capitalized initial letter
```

```
of the word 'quintillion'
```

□ abbreviations of ordinal number words

- first.....1st
- second.....2nd
- third.....3rd
- fourth.....4th
- fifth.....5th
- etc

also

- zeroth.....0th
- minus first.....-1st
- minus second......-2nd
- minus third.....-3rd
- minus fourth.....-4th
- minus fifth.....-5th

• etc GG6-42 □ some simplified/phonetic spellings

column	colm
row	ro
enough	enuf
rough	ruf
tough	tuf
flow	flo
grow	gro
low	
row	ro
show	sho
slow	slo
throw	thro
flow	flo
inflow	
outflow	
high	hi
low	lo
high-low	
low-high	lohi

low	.lo
below	.belo

though.....tho although.....altho

thought	thot
thoughtful	thotful
thoughtless	thotless

through	thru
view	vu
review	revu