The Transcendental Trellis
\#1 of Gottschalk’s Gestalts

A Series Illustrating Innovative Forms of the Organization \& Exposition of Mathematics
by Walter Gottschalk

Infinite Vistas Press PVD RI
2000

GG1-1 (43)
© 2000 Walter Gottschalk
500 Angell St \#414
Providence RI 02906
permission is granted without charge to reproduce \& distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

GG1-2

Δ the transcendental trellis

- the transcendental trellis
is a pictorial representation of defining relations
among the 26 basic transcendental functions:
the exponential function
the six basic trigonometric functions
the six basic hyperbolic functions
and their 13 inverses viz
the logarithmic function
the six basic inverse trigonometric functions
the six basic inverse hyperbolic functions
these 26 functions are clearly
the most important transcendental functions in elementary analysis ie calculus
the trellis is based upon
Euler's formula
$e^{i x}=\cos x+i \sin x$
where x may be considered to be a real or complex variable GG1-3
- the transcendental trellis is conveniently printed on five $8 \frac{1}{2}$ by 11 inch sheets;
to display the transcendental trellis arrange these five sheets on a flat surface
in the form of an aitch:
the square in the middle
6 trig on the upper left
6 trig $^{-1}$ on the lower left
6 hyp on the upper right
$6 \mathrm{hyp}^{-1}$ on the lower right with the edges of the sheets in contact (see GG1-25 on; display sheets are not imprinted with their numbers)
- the transcendental trellis is intended to be a unifying simplifying conceptual device (gestalt) in the understanding of the elementary transcendental functions; once it is seen and studied
a breadth of oversight and a depth of insight are hopefully acquired
that are imprinted indelibly in the memory
GG1-4
Δ notation used in the trellis
\& concepts / facts suggested by the trellis are described below
- \exp
$=$ the exponential function
$=\exp x$
$=\mathrm{e}^{\mathrm{x}}$
- 6 trig
$=$ the canonical list
of the six basic trigonometric functions expressed in exponential form
$\&$ ito \sin and \cos
- 6 hyp
$=$ the canonical list
of the six basic hyperbolic functions
expressed in exponential form
\& ito sinh and cosh

GG1-5

- \log
= the logarithm function
$=\log \mathrm{X}$
- 6 trig $^{-1}$
$=$ the canonical list
of the six basic inverse trigonometric functions expressed in logarithmic form
- 6 hyp $^{-1}$
$=$ the canonical list
of the six basic inverse hyperbolic functions
expressed in logarithmic form

GG1-6

- side - to - side horizontal motion
$=\leftrightarrow$
$=$ are analogous to each other
- up - and - down vertical motion
$=\mathrm{I}$
$=$ an elongated capital letter eye from the initial letter of 'inverse'
$=$ are inverse functions
- outward radial motion
$=$ radial arrows
$=$ permits the definition $/$ expression $/$ formulation of
- ' i in' refers to the explicit presence of the letter denoting the imaginary unit i in
(1) Euler' s formula \& companion formula
(2) the exponential expressions for the six trigonometric functions
(3) the logarithmic expressions for the six inverse trigonometric functions
- ' i out' refers to the explicit absence of the letter denoting the imaginary unit i in
(1) Lambert' s formula \& companion formula
(2) the exponential expressions for the six hyperbolic functions
(3) the logarithmic expressions for the six inverse hyperbolic functions

GG1-8

- the exponential formulas

6 trig
for the six trigonometric functions
are essentially equivalent to

Euler's formula
$e^{i x}=\cos x+i \sin x$
and the equivalent

Euler' s companion formula
$e^{-i x}=\cos x-i \sin x$
note that replacing x by -x and using parity interchanges the latter two formulas
the equivalences just mentioned are suggested in the trellis by vertical equivalence signs

GG1-9

- the exponential formulas

6 hyp
for the six hyperbolic functions are essentially equivalent to

Lambert' s formula
$\mathrm{e}^{\mathrm{x}}=\cosh \mathrm{x}+\sinh \mathrm{x}$
and the equivalent

Lambert' s companion formula $\mathrm{e}^{-\mathrm{x}}=\cosh \mathrm{x}-\sinh \mathrm{x}$
note that replacing x by -x and using parity interchanges the latter two formulas
the equivalences just mentioned are suggested in the trellis by vertical equivalence signs

GG1-10

- parity

20 of the 26 functions in the trellis have parity
as indicated below
$\sin \mathrm{x} \rightarrow$ odd $\leftarrow \sinh \mathrm{x}$
$\cos \mathrm{x} \rightarrow$ even $\leftarrow \cosh \mathrm{x}$
$\tan \mathrm{x} \rightarrow$ odd $\leftarrow \tanh \mathrm{x}$
$\cot \mathrm{x} \rightarrow$ odd $\leftarrow \operatorname{coth} \mathrm{x}$
$\sec \mathrm{x} \rightarrow$ even $\leftarrow \operatorname{sech} \mathrm{x}$
$\csc \mathrm{x} \rightarrow$ odd $\leftarrow \operatorname{csch} \mathrm{x}$
e^{x} has no parity
$\log x$ has no parity

GG1-11

$$
\sin ^{-1} \mathrm{x} \rightarrow \text { odd } \leftarrow \sinh ^{-1} \mathrm{x}
$$

$$
\cos ^{-1} \mathrm{x} \rightarrow \text { none } \leftarrow \cosh ^{-1} \mathrm{x}
$$

$$
\tan ^{-1} \mathrm{x} \rightarrow \text { odd } \leftarrow \tanh ^{-1} \mathrm{x}
$$

$$
\cot ^{-1} \mathrm{x} \rightarrow \mathrm{odd} \leftarrow \operatorname{coth}^{-1} \mathrm{x}
$$

$$
\sec ^{-1} \mathrm{x} \rightarrow \text { none } \leftarrow \operatorname{sech}^{-1} \mathrm{x}
$$

$$
\csc ^{-1} \mathrm{x} \rightarrow \text { odd } \leftarrow \operatorname{csch}^{-1} \mathrm{x}
$$

- periodicity

13 of the 26 functions in the trellis are periodic; the periods of these 13 functions are given below
$\sin x \rightarrow 2 \pi$
$\cos x \rightarrow 2 \pi$
$2 \pi i \leftarrow \cosh x$
$\tan \mathrm{x} \rightarrow \pi$
$\cot \mathrm{x} \rightarrow \pi$
$\sec x \rightarrow 2 \pi$
$\csc x \rightarrow 2 \pi$
$2 \pi i \leftarrow \operatorname{csch} x$
none of the 12 inverse functions is periodic
e^{x} is periodic with period $2 \pi \mathrm{i}$
$\log \mathrm{x}$ is not periodic

GG1-12

- reciprocation \& inversion = turning upside down
reciprocating the members of the equations in 6 trig \& using the reciprocal trigonometric identities, the column in 6 trig is inverted
reciprocating the members of the equations in 6 hyp \& using the reciprocal hyperbolic identities, the column in 6 hyp is inverted
replacing x by $\frac{1}{x}$ in the equations in $6 \mathrm{trig}^{-1}$ \& using the reciprocal trigonometric identities, the column in $6 \mathrm{trig}^{-1}$ is inverted
replacing x by $\frac{1}{x}$ in the equations in 6 hyp $^{-1}$ \& using the reciprocal hyperbolic identities, the column in 6 hyp $^{-1}$ is inverted

GG1-13

- to pass syntactically $=$ formally in the trellis from Euler' s formula \& companion formula to Lambert' s formula \& companion formula delete i \& annex h to \cos and sin
- to pass syntactically = formally in the trellis from the formulas in 6 trig to the formulas in 6 hyp delete i \& annex h to the functions' abbreviations
- a syntactic $=$ formal passage in the trellis
from the formulas in 6 trig $^{-1}$
to the formulas in $6 \mathrm{hyp}^{-1}$
not only deletes i \& annexes h
but also requires other changes

GG1-14

- to pass semantically $=$ algebraically in the trellis from Euler' s formula \& companion formula to Lamberts' formula \& companion formula
replace x by $\frac{\mathrm{x}}{\mathrm{i}}=-\mathrm{ix}$
\& use the parity formulas
$\sin (-x)=-\sin x$
$\cos (-x)=\cos x$
\& use the conversion formulas
$\sin \mathrm{x}=\mathrm{i} \sinh \mathrm{x}$
$\cos \mathrm{ix}=\cosh \mathrm{x}$
- to pass semantically = algebraically in the trellis from Lambert' s formula \& companion formula to Euler' s formula \& companion formula replace x by ix
\& use the conversion formulas
$\sinh \mathrm{ix}=\mathrm{i} \sin \mathrm{x}$
$\cosh \mathrm{ix}=\cos \mathrm{x}$

GG1 - 15

- to pass semantically $=$ algebraically in the trellis
from
to
use the identity
$\sin \mathrm{x} \quad \rightarrow \quad \cos \mathrm{x}$
$\cos x=\sqrt{1-\sin ^{2} x}$
$\cos x \quad \rightarrow \quad \sin x$
$\sin x=\sqrt{1-\cos ^{2} x}$
$\tan \mathrm{x} \quad \rightarrow \quad \sec \mathrm{x}$
$\sec x=\sqrt{1+\tan ^{2} x}$
$\cot \mathrm{x} \quad \rightarrow \quad \csc \mathrm{x}$
$\csc x=\sqrt{1+\cot ^{2} x}$
$\sec x \quad \rightarrow \quad \tan x$
$\csc \mathrm{x}$
$\rightarrow \quad \cot \mathrm{X}$
$\cot \mathrm{x}=\sqrt{\csc ^{2} \mathrm{x}-1}$

GG1-16

- to pass semantically $=$ algebraically in the trellis
from
to
$\sinh \mathrm{x} \rightarrow \cosh \mathrm{x}$
$\cosh \mathrm{x} \rightarrow \sinh \mathrm{x}$
$\tanh \mathrm{x} \rightarrow \operatorname{sech} \mathrm{X}$
$\operatorname{sech} x=\sqrt{1-\tanh ^{2} x}$
$\operatorname{coth} \mathrm{x} \rightarrow \quad \operatorname{csch} \mathrm{x}$
$\operatorname{csch} \mathrm{x}=\sqrt{\operatorname{coth}^{2} \mathrm{x}-1}$
$\operatorname{sech} x \rightarrow \tanh x$
$\operatorname{csch} x \rightarrow \quad \operatorname{coth} x$
$\operatorname{coth} \mathrm{x}=\sqrt{1+\operatorname{csch}^{2} \mathrm{x}}$
- to pass semantically $=$ algebraically in the trellis
from
to
replace by
$\sin ^{-1} \mathrm{x} \rightarrow \cos ^{-1} \mathrm{x}$
$\cos ^{-1} \mathrm{x} \rightarrow \sin ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{1-\mathrm{x}^{2}}$
$\tan ^{-1} \mathrm{x} \rightarrow \sec ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{\mathrm{x}^{2}-1}$
$\cot ^{-1} \mathrm{x} \rightarrow \csc ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{\mathrm{x}^{2}-1}$
$\sec ^{-1} \mathrm{x} \rightarrow \tan ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{1+\mathrm{x}^{2}}$
$\csc ^{-1} \mathrm{x} \rightarrow \cot ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{1+\mathrm{x}^{2}}$

GG1 - 18

- to pass semantically $=$ algebraically in the trellis
from
to replace by
$\sinh ^{-1} \mathrm{x} \rightarrow \cosh ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{\mathrm{x}^{2}-1}$
$\cosh ^{-1} \mathrm{x} \rightarrow \sinh ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{\mathrm{x}^{2}+1}$
$\tanh ^{-1} \mathrm{x} \rightarrow \operatorname{sech}^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{1-\mathrm{x}^{2}}$
$\operatorname{coth}^{-1} \mathrm{x} \rightarrow \operatorname{csch}^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{1+\mathrm{x}^{2}}$
$\operatorname{sech}^{-1} \mathrm{x} \rightarrow \tanh ^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{1-\mathrm{x}^{2}}$
$\operatorname{csch}^{-1} \mathrm{x} \rightarrow \operatorname{coth}^{-1} \mathrm{x}$
$\mathrm{x} \rightarrow \sqrt{\mathrm{x}^{2}-1}$

GG1 - 19

- to pass semantically = algebraically in the trellis
(1) between the exponential formulas in 6 trig \& in 6 hyp and
(2) between the logarithmic formulas in 6 trig $^{-1} \&$ in 6 hyp $^{-1}$
use the 48 trig - hyp conversion formulas
that are organized on nine sheets
and which may be displayed
in an aitch - shaped array

GG1-20
Δ biolines

- Euler, Leonard

1707-1783
Swiss (spent many years in Germany \& Russia) algebraist, analyst, geometer, number theorist, probabilist, applied mathematician, calculating prodigy, most prolific mathematician of all time

Euler $=$ pr OI - ler

- Lambert, Johann Heinrich

1728-1777
Swiss-German analyst, number theorist, astronomer, philosopher, physicist; gave the first systematic development of hyperbolic functions and introduced their names \& notation

GG1-21
Δ a note on the pronunciation of unpronounceable functional abbreviations

- the following suggested spoken readings of the functional notation seem to be more or less standard:

$$
\begin{array}{ll}
\exp =\text { ex }- \text { po } & \ln =\text { nat } \log =\log \\
\mathrm{e}^{\mathrm{x}}=\text { e to the } \mathrm{x} & \log =\log \\
\sin =\operatorname{sine}=\operatorname{sign} & \sinh =\operatorname{sinch} \\
\cos =\text { koss } & \cosh =\text { kosch } \\
\tan =\tan & \tanh =\text { tanch } \\
\cot =\text { koh }-\tan & \operatorname{coth}=\text { koh }- \text { tanch } \\
\sec =\text { seck } & \text { sech }=\text { setch } \\
\csc =\text { koh }- \text { seck } & \text { csch }=\text { koh }- \text { setch }
\end{array}
$$

- also:
trig $=$ trig
hyp = hype / hip
$\mathrm{fcn}=$ function
$\mathrm{f}^{-1}=$ inverse f where $\mathrm{f} \in$ trig fcns \cup hyp fcns
- an alternative would be the full pronunciation of names for trig fcns \& aitch / hype / hip sine etc for hyp fens

GG1-23
note that certain subtleties about domains
ranges
square roots
multiple - valued functions
principal - valued inverse functions
logarithms of complex numbers
are deliberately omitted from consideration
for the sake of greater simplicity in an initial overview

Einstein once remarked that everything should be made as simple as possible but no simpler

GG1-24

the transcendental trellis

6 trig

$$
\sin \mathrm{x}=\frac{\mathrm{e}^{\mathrm{ix}}-\mathrm{e}^{-\mathrm{ix}}}{2 \mathrm{i}}=\sin \mathrm{x}
$$

$$
\cos x=\frac{e^{i x}+e^{-i x}}{2}=\cos x
$$

$\tan x=\frac{1}{i} \frac{e^{i x}-e^{-i x}}{e^{i x}+e^{-i x}}=\frac{\sin x}{\cos x}$
$\cot x=i \frac{e^{i x}+e^{-i x}}{e^{i x}-e^{-i x}}=\frac{\cos x}{\sin x}$
$\sec x=\frac{2}{e^{i x}+e^{-i x}}=\frac{1}{\cos x}$
$\csc \mathrm{x}=\frac{2 \mathrm{i}}{\mathrm{e}^{\mathrm{ix}}-\mathrm{e}^{-\mathrm{ix}}}=\frac{1}{\sin \mathrm{x}}$

GG1-26

6 trig

$\begin{array}{ll}\sin x & =\frac{e^{i x}-e^{-i x}}{2 i} \\ \cos x & = \\ \frac{e^{i x}+e^{-i x}}{2} & =\sin x\end{array}$
$\tan x=\frac{1}{i \frac{e^{i x}}{i}-e^{-i x}+e^{-i x}}=\frac{\sin x}{\cos x}$
$\cot x$
$\sec x$

$$
\frac{2}{e^{i x}+e^{-i x}}
$$

$$
=\quad \frac{1}{\cos x}
$$

$\csc \mathrm{X}$

$$
=\frac{2 i}{e^{i x}-e^{-i x}} \quad=\frac{1}{\sin x}
$$

6 hyp
$\sinh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}=\sinh \mathrm{x}$
$\cosh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}=\cosh \mathrm{x}$
$\tanh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}=\frac{\sinh \mathrm{x}}{\cosh \mathrm{x}}$
$\operatorname{coth} \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}}{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-x}}=\frac{\cosh \mathrm{x}}{\sinh \mathrm{x}}$
$\operatorname{sech} x=\frac{2}{e^{x}+e^{-x}}=\frac{1}{\cosh x}$
$\operatorname{csch} \mathrm{x}=\frac{2}{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}=\frac{1}{\sinh \mathrm{x}}$

GG1-28

6 hyp

$$
\begin{aligned}
& \sinh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{2}=\sinh \mathrm{x} \\
& \cosh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-\mathrm{x}}}{2}=\cosh \mathrm{x} \\
& \tanh \mathrm{x}=\frac{\mathrm{e}^{\mathrm{x}}-\mathrm{e}^{-\mathrm{x}}}{\mathrm{e}^{\mathrm{x}}+\mathrm{e}^{-x}}=\frac{\sinh \mathrm{x}}{\cosh \mathrm{x}}
\end{aligned}
$$

$\operatorname{coth} \mathrm{x}$

$=\frac{\cosh x}{\sinh x}$
$\operatorname{sech} x=\frac{2}{e^{x}+e^{-x}}=\frac{1}{\cosh x}$
$\operatorname{csch} \mathrm{x}=\frac{2}{e^{x}-e^{-x}}=\frac{1}{\sinh x}$

6 trig $^{-1}$

$$
\begin{aligned}
& \sin ^{-1} \mathrm{x}=\frac{1}{\mathrm{i}} \log \left(\mathrm{ix}+\sqrt{1-\mathrm{x}^{2}}\right) \\
& \cos ^{-1} \mathrm{x}=\frac{1}{\mathrm{i}} \log \left(\mathrm{x}+\mathrm{i} \sqrt{1-\mathrm{x}^{2}}\right)
\end{aligned}
$$

$$
\tan ^{-1} \mathrm{x}=\frac{1}{2 \mathrm{i}} \log \frac{1+\mathrm{ix}}{1-\mathrm{ix}}
$$

$$
\cot ^{-1} \mathrm{x}=\frac{1}{2 \mathrm{i}} \log \frac{\mathrm{ix}-1}{\mathrm{ix}+1}
$$

$$
\sec ^{-1} \mathrm{x}=\frac{1}{\mathrm{i}} \log \frac{1+\mathrm{i} \sqrt{\mathrm{x}^{2}-1}}{\mathrm{x}}
$$

$$
\csc ^{-1} x=\frac{1}{i} \log \frac{i+\sqrt{x^{2}-1}}{x}
$$

$$
\begin{array}{ll}
& = \\
\sin ^{-1} x & =\frac{1}{i} \operatorname{trig} \log \left(i x+\sqrt{1-x^{2}}\right) \\
& = \\
\cos ^{-1} x & \frac{1}{i} \log \left(x+i \sqrt{1-x^{2}}\right) \\
\tan ^{-1} x & \frac{1}{2 i} \log \frac{1+i x}{1-i x} \\
\cot ^{-1} x & \frac{1}{2 i} \log \frac{i x-1}{i x+1} \\
\sec ^{-1} x & \frac{1}{i} \log \frac{1+i \sqrt{x^{2}-1}}{x} \\
& = \\
\csc ^{-1} x & \frac{1}{i} \log \frac{i+\sqrt{x^{2}-1}}{x}
\end{array}
$$

6 hyp $^{-1}$
$\sinh ^{-1} \mathrm{x}=\log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)$
$\cosh ^{-1} x=\log \left(x+\sqrt{x^{2}-1}\right)$
$\tanh ^{-1} x=\frac{1}{2} \log \frac{1+x}{1-x}$
$\operatorname{coth}^{-1} x=\frac{1}{2} \log \frac{x+1}{x-1}$
$\operatorname{sech}^{-1} \mathrm{x}=\log \frac{1+\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}}$
$\operatorname{csch}^{-1} \mathrm{x}=\log \frac{1+\sqrt{1+\mathrm{x}^{2}}}{\mathrm{x}}$

GG1-32

6 hyp $^{-1}$

$$
\begin{array}{lll}
\sinh ^{-1} \mathrm{x} & = & \log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right) \\
\cosh ^{-1} \mathrm{x} & = & \log \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}-1}\right) \\
\tanh ^{-1} \mathrm{x} & = & \frac{1}{2} \log \frac{1+\mathrm{x}}{1-\mathrm{x}} \\
& = & \frac{1}{2} \log \frac{\mathrm{x}+1}{\mathrm{x}-1} \\
\operatorname{coth}^{-1} \mathrm{x} & = & \log \frac{1+\sqrt{1-\mathrm{x}^{2}}}{\mathrm{x}} \\
\operatorname{sech}^{-1} \mathrm{x} & \log \frac{1+\sqrt{1+\mathrm{x}^{2}}}{\mathrm{x}}
\end{array}
$$

\square the trigonometric-hyperbolic conversion formulas

trigix ito hypx

$\sin \mathrm{x}=\mathrm{i} \sinh \mathrm{x}$
$\operatorname{cosix}=\cosh \mathrm{x}$

$\tan \mathrm{ix}=\mathrm{itanh} \mathrm{x}$
$\cot \mathrm{x}=\frac{1}{\mathrm{i}} \operatorname{coth} \mathrm{x}$
$\sec i x=\operatorname{sech} x$
$\csc i x=\frac{1}{i} \operatorname{csch} x$
$\operatorname{trig} x$ ito hypix
$\sin \mathrm{x}=\frac{1}{\mathrm{i}} \sinh \mathrm{ix}$
$\cos \mathrm{x}=\cosh \mathrm{ix}$
$\tan \mathrm{X}=\frac{1}{\mathrm{i}} \tanh \mathrm{ix}$
$\cot \mathrm{x}=\mathrm{i} \operatorname{coth} \mathrm{ix}$
$\sec \mathrm{x}=\operatorname{sech} \mathrm{x}$
$\csc x=i \operatorname{csch} i x$
hypix ito $\operatorname{trig} x$

$\sinh \mathrm{x}=\mathrm{i} \sin \mathrm{x}$

$\cosh i x=\cos x$
$\tanh i x=i \tan x$
$\operatorname{coth} i x=\frac{1}{i} \cot x$
$\operatorname{sech} i x=\sec x$
$\operatorname{csch} \mathrm{ix}=\frac{1}{\mathrm{i}} \csc \mathrm{x}$
hypx ito trigix
$\sinh \mathrm{x}=\frac{1}{\mathrm{i}} \sin \mathrm{ix}$
$\cosh \mathrm{x}=\operatorname{cosix}$
$\tanh x=\frac{1}{i} \tan i x$
$\operatorname{coth} \mathrm{x}=\mathrm{i} \cot \mathrm{ix}$
$\operatorname{sech} \mathrm{x}=\sec \mathrm{ix}$
$\operatorname{csch} \mathrm{x}=\mathrm{icsc} \mathrm{x}$

$$
\operatorname{trig}^{-1} \text { ix ito hyp }{ }^{-1}
$$

$$
\begin{aligned}
& \sin ^{-1} \mathrm{ix}=\mathrm{i} \sinh ^{-1} \mathrm{x} \\
& \cos ^{-1} \mathrm{ix}=\mathrm{i} \cosh ^{-1} \mathrm{ix}
\end{aligned}
$$

$\tan ^{-1} \mathrm{ix}=\mathrm{i} \tanh ^{-1} \mathrm{x}$

$$
\cot ^{-1} \mathrm{ix}=\frac{1}{\mathrm{i}} \operatorname{coth}^{-1} \mathrm{x}
$$

$$
\sec ^{-1} i x=\operatorname{isech}^{-1} i x
$$

$$
\csc ^{-1} \mathrm{ix}=\frac{1}{\mathrm{i}} \operatorname{csch}^{-1} \mathrm{x}
$$

$$
\operatorname{trig}^{-1} \mathrm{x} \text { ito } \mathrm{hyp}^{-1}
$$

$$
\begin{aligned}
& \sin ^{-1} x=\frac{1}{i} \sinh ^{-1} i x \\
& \cos ^{-1} x=i \cosh ^{-1} x \\
& \tan ^{-1} x=\frac{1}{i} \tanh ^{-1} i x
\end{aligned}
$$

$$
\cot ^{-1} \mathrm{x}=\mathrm{i} \operatorname{coth}^{-1} \mathrm{ix}
$$

$$
\sec ^{-1} \mathrm{x}=\mathrm{isech}^{-1} \mathrm{x}
$$

$$
\csc ^{-1} \mathrm{x}=\mathrm{i}_{\operatorname{csch}}{ }^{-1} \mathrm{ix}
$$

$$
\text { hyp }^{-1} \text { ix ito trig }{ }^{-1}
$$

$$
\sinh ^{-1} \mathrm{ix}=\mathrm{i} \sin ^{-1} \mathrm{x}
$$

$$
\cosh ^{-1} \mathrm{ix}=\frac{1}{\mathrm{i}} \cos ^{-1} \mathrm{ix}
$$

$\tanh ^{-1} \mathrm{ix}=\mathrm{i} \tan ^{-1} \mathrm{x}$
$\operatorname{coth}^{-1} \mathrm{ix}=\frac{1}{\mathrm{i}} \cot ^{-1} \mathrm{x}$
$\operatorname{sech}^{-1} \mathrm{ix}=\frac{1}{\mathrm{i}} \sec ^{-1} \mathrm{ix}$
$\operatorname{csch}^{-1} \mathrm{ix}=\frac{1}{\mathrm{i}} \csc ^{-1} \mathrm{x}$

$\operatorname{hyp}^{-1} \mathrm{x}$ ito trig $^{-1}$

$$
\sinh ^{-1} \mathrm{x}=\frac{1}{\mathrm{i}} \sin ^{-1} \mathrm{ix}
$$

$\cosh ^{-1} \mathrm{x}=\frac{1}{\mathrm{i}} \cos ^{-1} \mathrm{x}$
$\tanh ^{-1} x=\frac{1}{i} \tan ^{-1} \mathrm{i} x$
$\operatorname{coth}^{-1} \mathrm{x}=\mathrm{i} \cot ^{-1} \mathrm{i} \mathrm{x}$
$\operatorname{sech}^{-1} \mathrm{x}=\frac{1}{\mathrm{i}} \sec ^{-1} \mathrm{x}$
$\operatorname{csch}^{-1} \mathrm{x}=\mathrm{icsc}{ }^{-1} \mathrm{ix}$
\square the squares of trig-hyp special values may be constructed by making use of the preceding formulas eg

$$
\begin{aligned}
& \begin{array}{rll}
\sin \mathrm{x} & = & \frac{1}{\mathrm{i}} \sinh \mathrm{ix} \\
i \sin \mathrm{x} & = & \\
\sinh \mathrm{ix}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\sin ^{-1} \mathrm{x} & =\frac{1}{\mathrm{i}} \sinh ^{-1} \mathrm{ix} \\
i \sin ^{-1} \mathrm{x} & =\sinh ^{-1} \mathrm{ix}
\end{aligned}
\end{aligned}
$$

