Some Quaint & Curious & Almost Forgotten Trig Functions

#80 of Gottschalk's Gestalts

A Series Illustrating Innovative Forms of the Organization & Exposition of Mathematics by Walter Gottschalk

Infinite Vistas Press PVD RI 2002

GG80-1 (25)

© 2002 Walter Gottschalk 500 Angell St #414 Providence RI 02906 permission is granted without charge to reproduce & distribute this item at cost for educational purposes; attribution requested; no warranty of infallibility is posited

six related trigonometric functions,
 antiquated & quaint & curious,
 that are primarily of historical interest,
 with some still sometimes somewhat useful

let

• $A \in angle$

then

• the versed sine of A $=_{ab}$ the versine of A $=_{dn}$ vers A $=_{rd}$ vers A = verse A $=_{df} 1 - \cos A$ wh versine \leftarrow versed sine vers \leftarrow versine versed = turned GG80-3

```
the coversed sine of A
the versed cosine of A
ab the coversine of A
ab the coversine of A
ab the coversine of A
ab the coverse A
ab the
```

the versed sine of A = $1 - \cos A$ & the versed cosine of A = $1 - \sin A$

• half of the versed sine of A = half of the versine of A $=_{ab}$ haversine of A $=_{dn}$ havers A = hav A $=_{rd}$ hav - er - sine A = hav - erse A = have A $=_{df} \frac{1}{2}$ vers A $= \frac{1}{2}(1 - \cos A)$ wh haversine \leftarrow half of versine havers \leftarrow haversine

hav \leftarrow <u>hav</u>ersine

• half of the coversed sine of A = half of the versed cosine of A = half of the coversine of A =_{ab} hacoversine of A =_{ab} hacovers A =_{dn} hack - o - ver - sine A = hack - o - verse A =_{df} $\frac{1}{2}$ covers A = $\frac{1}{2}(1 - \sin A)$ wh hacoversine \leftarrow half of coversine

hacovers \leftarrow <u>hacovers</u>ine

• the external secant of A $=_{ab}$ the exsecant of A $=_{dn}$ exsec A $=_{rd}$ ecks - see - cant A = ecks - seck A $=_{df}$ sec A - 1 wh exsecant \leftarrow external secant exsec \leftarrow exsecant

- the external cosecant of A
- $=_{ab}$ the excosecant of A
- $=_{dn} \operatorname{excsc} A$ $=_{rd} \operatorname{ecks} \operatorname{koh} \operatorname{see} \operatorname{cant} A$ $= \operatorname{ecks} \operatorname{koh} \operatorname{seck} A$ $=_{df} \operatorname{csc} A 1$ wh
 excosecant $\leftarrow \operatorname{external} \operatorname{cosecant}$ excsc $\leftarrow \operatorname{excosecant}$

 \square some identities involving these trig fcns

• vers A =
$$1 - \cos A = 2\sin^2 \frac{A}{2}$$

• covers
$$A = 1 - \sin A$$

• havers A =
$$\frac{1}{2}(1 - \cos A) = \sin^2 \frac{A}{2}$$

• hacovers A =
$$\frac{1}{2}(1-\sin A)$$

• exsec A =
$$\sec A - 1$$

• $\operatorname{excsc} A = \operatorname{csc} A - 1$

- vers A = 2 have rs A
- covers $A = 2 \operatorname{covers} A$

• havens
$$A = \frac{1}{2} \operatorname{vers} A$$

• hacovers
$$A = \frac{1}{2}$$
 covers A

- exsec $A = \sec A \operatorname{vers} A$
- excsc A = $\csc A \operatorname{covers} A$

- vers \hat{A} = covers A
- covers \hat{A} = vers A
- havers \hat{A} = hacovers A
- hacovers \hat{A} = havers A
- exsec \hat{A} = excsc A
- excsc \hat{A} = exsec A

```
wh
```

Â

 $=_{rd} \operatorname{comp} A = A \operatorname{comp}$ $=_{df} \text{ the complement of } A$ $\operatorname{comp} \leftarrow \underline{\operatorname{complement}}$ $\operatorname{note the overscript suggests}$ $\operatorname{a right angle opening downward}$ GG80-11

- vers $\overline{A} = 2 \text{vers } A$
- covers \overline{A} = covers A
- havers $\overline{A} = 1 havers A$
- hacovers \overline{A} = hacovers A
- exsec $\overline{A} = -2 \text{exsec } A$
- excsc \overline{A} = excosec A

wh

$\overline{\mathbf{A}}$

 $=_{rd} \sup A = A \sup$ $=_{df} the supplement of A$ $sup \leftarrow supplement$ note the overscript suggests a straight angle

- vers $(-A) = \operatorname{vers} A$
- covers (-A) = 2 covers A
- havers (-A) = havers A
- hacovers (-A) = 1 hacovers A
- exsec(-A) = exsec A
- excsc(-A) = -2 excsc A

- vers $A \ge 0$
- covers $A \ge 0$
- have s $A \ge 0$
- hacovers $A \ge 0$

☐ the haversine formula for the angles of a plane triangle

• hav A =
$$\frac{(s-b)(s-c)}{bc}$$

& cyclically

□ the haversine formula for the angles of a spherical triangle

• hav A = $\frac{\sin(s-b)\sin(s-c)}{\sin b \sin c}$ = $\frac{hav a - hav (b-c)}{\sin b \sin c}$ = $hav [\pi - (B+C)] + \sin B \sin C$ hav a

& cyclically GG80-15

☐ the haversine formula for the sides of a spherical triangle

• hav a = hav(b-c) + sin b sin c hav A

& cyclically

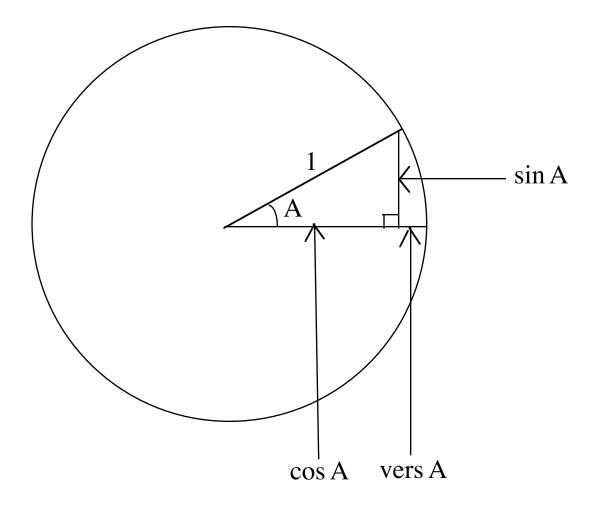
note: this formula may be used to find the great - circle distance and the bearing between two positions on the Earth's surface once their latitude & longitude are known

□ in times gone by viz in the 18th & the 19th & the early part of the 20th centuries these trig functions were used rather frequently in geography & in marine navigation; even today you may see some appearance of some of them & not only in matters involving the history of mathematics a study of the following
labeled diagrams
will reveal reasons for
the designations of the four trig functions

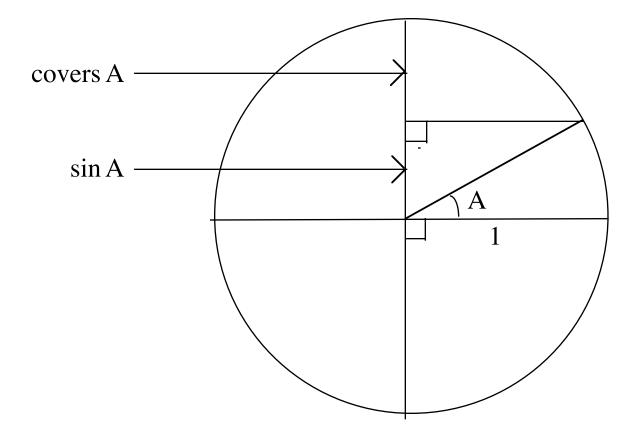
- the versed sine of A
- = vers A
- $= 1 \cos A$
- the coversed sine of A
- = covers A
- $= 1 \sin A$
- the exsecant of A
- = exsec A
- $= \sec A 1$
- the excosecant of A
- $= \operatorname{excsc} A$
- $= \csc A 1$

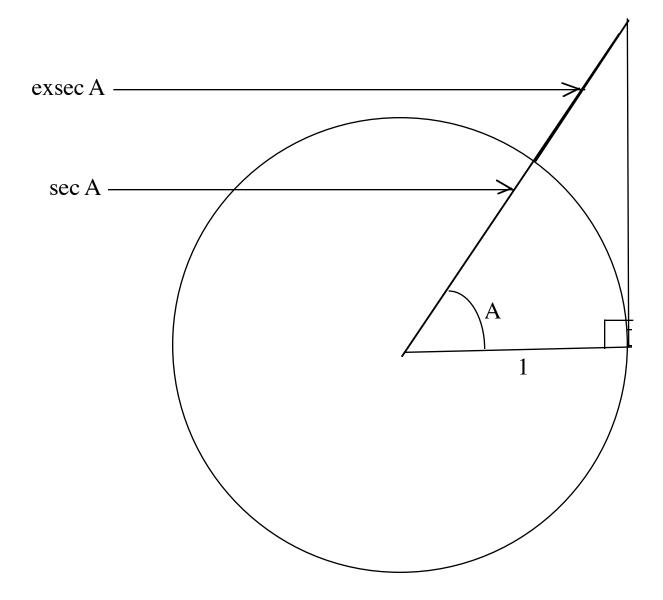
□ etymology

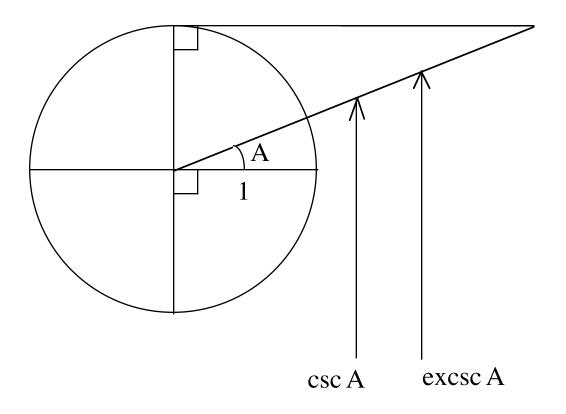
- sinus rectus (Latin, historical term)
- = vertical sine
- = sine
- sinus versus (Latin, historical term)
- = versed sine
- = sine turned on its side
- = versine
- coversine
- = <u>versine</u> of <u>co</u>mplement
- exsecant
- = \underline{ex} ternal part of the \underline{secant}
- excosecant
- = \underline{ex} ternal part of the $\underline{cosecant}$



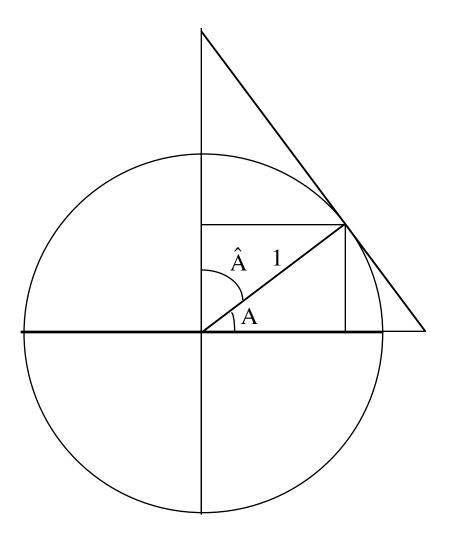
GG80-20







GG80-23



identify the line segments representing ie whose lengths are $\sin A = \cos \hat{A}$ $\cos A = \sin \hat{A}$ $\tan A = \cot \hat{A}$ $\cot A = \tan \hat{A}$ $\sec A = \csc \hat{A}$ $\csc A = \sec \hat{A}$ vers $A = covers \hat{A}$ $\operatorname{covers} A = \operatorname{vers} \hat{A}$ $exsec A = excsc \hat{A}$ $\operatorname{excsc} A = \operatorname{exsec} \hat{A}$